مکانیک آماری

مکانیک آماری، یکی از مباحث مطرح در فیزیک است که به سیستم‌هایی با تعداد متغیرهای بسیار زیاد می‌پردازد. این متغیرها می‌توانند ذراتی چون اتم‌ها، مولکول‌ها، یا ذرات بنیادی باشند که تعداد آن‌ها می‌تواند هم‌مرتبه با عدد آووگادرو باشد.





در این مبحث، با استفاده از خاصیتهای میکروسکوپی این ذرات مانند ساختار اتمی و برهمکنش بین آن‌ها، اطلاعاتی در مورد خواص ماکروسکوپی سیستم مانند فشار، انتروپی و انرژی آزاد گیبس، از طریق محاسبات و روش‌های آماری به دست می‌آید. مثلاً معادله‌های حالت در ترمودینامیک توسط مدل‌های میکروسکوپی-آماری مشتق می‌شوند.

مکانیک آماری شکوفایی خود را قبل از همه، مدیون دانشمندان کلاسیکی نظیر لودویگ بولتزمان، جوسایا ویلارد گیبز و جیمز کلرک ماکسول می‌باشد.





میانه‌ها و شاخص‌های آماری
میانه‌ها وشاخص‌های آماری ترتیبی

iامین شاخص آمار ترتیبی یک مجموعه n عضوی، iامین عضو کوچک است. به عنوان مثال، مینیمم یک مجموعه از اعضا، اولین شاخص آمار ترتیبی (i=۱)است و ماکزیمم، nامین شاخص آمار ترتیبی (i=n)است. میانه، به طور غیر رسمی، نقطهٔ میانی مجموعه‌است. هنگامی که n فرد است، میانه منحصر به فرد است که در i=(n+۱)/۲ رخ می‌دهد. وقتی n زوج است، دو میانه وجود دارند که در i=n/۲ و i=n/۲+۱ رخ می‌دهند. این مقاله انتخاب iامین شاخص آمار ترتیبی از یک مجموعه با n عضو مجزا را بیان می‌کند. مسئله انتخاب می‌تواند به طور رسمی به شکل زیر تعیین شود: ورودی: مجموعه A با n عدد(مجزا) و عدد i، که i بزرگتر یا مساوی ۱ و کوچکتر یا مساوی با n است. خروجی: عضو x در A که بزرگتر از دقیقا i-۱ عضو دیگر A می‌باشد. مسئله انتخاب می‌تواند در زمان (O(nlgn حل شود، چون می‌توانیم اعداد را با استفاده از مرتب سازی دودویی (heap sort) یا مرتب سازی ادغام مرتب کنیم و سپس به سادگی iامین عنصر در آرایه خروجی را مشخص کنیم اما الگوریتم‌های سریع تری وجود دارند. ابتدا مسئله انتخاب مینمم و ماکزیمم یک مجموعه از اعضا را بررسی می‌کنیم. مسئله جالب تر، مسئله انتخاب کلی است، که دردوقسمت بررسی می‌شود.قسمت اول یک الگوریتم عملی را تحلیل می‌کند که در حالت میانگین به زمان اجرای (O(n می‌رسد. قسمت بعد یک الگوریتم است که جنبه‌های نظری بیشتری داشته و در بدترین حالت به زمان اجرای (O(n می‌رسد.






مینیمم و ماکزیمم

چه تعداد مقایسه برای تعیین یک مجموعه n عضوی لازم است؟ می‌توانیم به سادگی به حد بالای n-۱ برای مقایسه‌ها برسیم: هر عضو مجموعه را به ترتیب بررسی کرده و کوچکترین عضوی که تا کنون دیده شده‌است را نگه می‌داریم. در روال زیر، فرض می‌کنیم مجموعه در آرایه A قرار دارد، که طول آرایه n است. قطعا یافتن ماکزیمم می‌تواند با n-۱ مقایسه نیز انجام شود. آیا این بهترین کاری است که می‌توانیم انجام دهیم؟ بله، چون می‌توانیم به حد پایین n-۱ برا مقایسه‌ها برای مینممم برسیم. الگوریتم را در نظر بگیرید که مینیمم را به صورت مسابقه‌ای بین عناصر تعیین می‌کند. هر مقایسه یک بازی در مسابقه‌است که در آن عنصر کوچکتر از میان دو عنصر، برنده می‌شود. نگرش اصلی این است که هر عنصر به جز برنده باید حداقل یک بازی را ببازد. از این رو n-۱ مقایسه برای تعیین مینیمم لازم است.






مینیمم و ماکزیمم هم زمان

در برخی کاربردها، باید هم مینیمم و هم ماکزیمم یک مجموعه از n عضو را پیدا کنیم. ارائه الگوریتمی که بتواند هم مینیمم و هم ماکزیمم n عضو را با استفاده از (θ(nمقایسه، که به طور مجانبی بهینه‌است، پیدا کند سخت نیست. به سادگی مینیمم و ماکزیمم را به طور مستقل، با استفاده از n-۱ مقایسه برای هر یک پیدا می‌کند، که در کل ۲n-۲ مقایسه انجام می‌دهد. در حقیقت، حداکثر ۳n/۲ مقایسه برای پیدا کردن مینیمم و ماکزیمم کافی است. استراتژی این است که اعضای مینیمم و ماکزیمم را که تا این جا دیده شده‌اند نگه داریم. به جای این که هر عضو ورودی را با مقایسه با مینیمم و ماکزیمم فعلی پردازش کنیم، که هزینه ۲ مقایسه برای هر عضو را صرف می‌کند، اعضا را جفت به جفت مقایسه می‌کنیم. ابتدا جفت عضوها را از ورودی با یکدیگر مقایسه می‌کنیم و سپس عضو کوچکتر را با مینیمم جاری و عضو بزرگتر را با ماکزیمم جاری مقایسه می‌کنیم که هزینه ۳ مقایسه برای هر دو عضو را موجب می‌شود.






انتخاب در زمان خطی مورد انتظار

مسئله انتخاب کلی نسبت به مسئله پیدا کردن یک مینیمم سخت تر به نظر می‌آیدو هم چنان که به صورت شگفت آوری زمان اجرای مجانبی هر دو مسئله یکی است: (θ(n.در این بخش یک الگوریتم تقسیم و حل را برای مسئله انتخاب ارائه می دهیم. الگوریتم Randomized-Select بعد از الگوریتم مرتب سازی سریع مدل می‌شود. همانند مرتب سازی سریع ایده آن است که آرایه ورودی را به طور بازگشتی تقسیم کنیم. ولی برخلاف مرتب سازی سریع که هر دو طرف تقسیم بندی را به صورت بازگشتی پردازش می‌کند، Randomized-Select فقط روی یک طرف تقسیم بندی عمل می‌کند. این تفاوت در تحلیل آشکار می‌شود. در حالی که زمان اجرای مورد انتظار مرتب سازی سریع (θ(nlgn است، زمان مورد انتظار این الگوریتم (θ(nاست. Randomized-Select از روال Randomized-Partition که در بخش مرتب سازی سریع معرفی شد استفاده می‌کند.






انتخاب در بدترین حالت زمان خطی

اکنون الگوریتمی را بررسی می کنیم که زمان اجرای آن در بدترین حالت (O(nاست. مانند Randomized-Select، الگوریتم Select عنصر مورد نظر را با تقسیم بندی بازگشتی آرایه ورودی پیدا می‌کند. اما ایده‌ای که پشت این الگوریتم وجود دارد، این است که یک قسمت خوب را در هنگامی که آرایه تقسیم می‌شود تضمین می‌کند. Select از الگوریتم تقسیم بندی قطعی Partition مربوط به مرتب سازی سریع استفاده می‌کند که طوری تغییر یافته است که عنصری که تقسیم بندی حول آن انجام می‌شود را به عنوان پارامتر ورودی بگیرد. این الگوریتم iامین عنصر کوچک از آرایه ورودی با n>1 عنصر را با اجرای مراحل زیر تعیین می‌کند.(اگر n=1باشد آن گاه Select به طور مطلق، تنها ورودیش را به عنوان iامین عنصر کوچک برمی گرداند.)

n عنصرآرایه ورودی را بهn/5 گروه 5 عنصری تقسیم کنید و حداکثر یک گروه از n mod 5 عنصر باقیمانده ساخته می‌شود.
میانه هر یک از n/5گروه را ابتدا با مرتب ساز درجی عناصر هر گروه (که حداکثر 5 عنصر در هر یک وجود دارد)و سپس انتخاب میانه از لیست مرتب شده عناصر گروه پیدا کنید.
از Select به صورت بازگشتی برای پیدا کردن میانه x از n/5میانه‌ای که در مرحله 2 پیدا شدند استفاده کنید.
آرایه ورودی را حول میانهٔ میانه‌ها (یعنی x)با استفاده از نسخه تغییر یافته Partition تقسیم کنید. فرض کنید k یک واحد بیشتر از تعداد عناصر در طرف کم تر تقسیم بندی باشد، بنابراین k، x امین عنصر کوچک است و n-k عنصر در طرف بیشتر تقسیم بندی موجود است.
اگر i=k باشد، x را برگردانید در غیر این صورت اگر i<k باشد از Select به صورت بازگشتی برای پیدا کردن iامین عنصر کوچک در طرف کم تر استفاده کرده یا اگر i>k باشد، از آن برای پیدا کردن (i-k)امین عنصر کوچک در طرف بیشتر استفاده کنید.

برای تحلیل زمان اجرای Select، ابتدا یک حد پایین روی تعداد عناصر بزرگتر از عنصر تقسیم کنندهٔ x تعیین می کنیم. حداقل نصفی از میانه‌های پیدا شده در مرحله 2 بزرگتر از x یعنی میانهٔ میانه‌ها هستند. بنابراین در حداقل نصف n/5گروه، 3 عنصر وجود دارند که از x بزرگترند، به جز برای گروهی که اگر5 به n قابل قسمت نباشد، کم تر از 5 عنصر دارد و گروهی که خود شامل x است. با منظور نکردن این دو گروه ثابت می‌شود که تعداد عناصر بزرگتر از x حداقل برابر است با

3(2-1/2n/5)

که این عبارت بزرگتر یا مساوی با 3n/10-6 است. به طور مشابه عناصری که کوچک تر از x هستند حداقل 3n/10-6 است. بنابراین در بدترین حالت، Select برای حداکثر 7n/10+6 عنصر در مرحلهٔ 5 به طور بازگشتی فراخوانی می‌شود.





توان آماری

توان یک آزمون آماری احتمال رد کردن فرض صفر اشتباه می‌باشد (احتمال آنکه تست آماری مرتکب خطای نوع دوم نشود). هر چه توان یک تست بیشتر باشد احتمال وقوع خطای نوع دوم کمتر خواهد بود.

محققان همیشه نگران این بوده اند که نکند فرضیه صفر را رد کنند در حالی که در واقع درست بوده است (تست آماری مرتکب خطای نوع یک شود) یا اینکه نتوانند فرضیه صفر را رد کنند در حالی که این روش های استفاده شده بوده اند که اثری واقعی داشته‌اند (تست آماری مرتکب خطای نوع دو شود). توان آماری یک تست، احتمال آن است که منجر به این میشود که شما فرضیه صفر را رد کنید وقتی فرضیه در واقع غلط است. چون بیشتر تست های امری در شرایطی انجام میشوند که عامل اصلی(treatment)، حداقل کمی اثر روی نتیجه دارد، توان آماری به صورت احتمال اینکه آن تست "منجر به نتیجه گیری درستی در مورد فرضیه صفر میشود"، تعبیر میشود.

توان یک تست آماری عبارت است از: یک، منهای احتمال ایجاد خطای نوع دو. یا به عبارتی، احتمال اینکه شما از خطای نوع دو دوری میکنید.

در مطالعات با توان آماری بالا، خیلی کم پیش میاید که در تشخیص اثرات تمرین اشتباه کنند.

توان یک تست آماری، شامل عملکردِ: حساسیت، اندازه اثر در جمیعت آماری، و استاندارد های استفاده شده برای اندازه گیری فرضیه آماری است. - ساده ترین راه برای افزایش حساسیت یک تحقیق، افزایش تعداد آزمودنی هاست. - در مورد استاندارد، ساده تر آن است که فرضیه صفر را رد کنیم اگر سطح معناداری، ۰.۰۵ باشد تا ۰.۰۱ یا ۰.۰۰۱.

سه قدم برای تعین توان آماری: ۱- مشخص کردن حد، برای معنی دار بودن آماری. فرضیه چیست؟ سطح معناداری چقدر است؟

۲- حدس زدن اندازه اثر. انتظار دارد که درمان(treatment)، دارای اثری کم، زیاد، یا متوسط باشد؟





احتمالات

بطور ساده، احتمالات (به انگلیسی: Probability) به شانس وقوع یک حادثه گفته می‌شود.

احتمال معمولا مورد استفاده برای توصیف نگرش ذهن نسبت به گزاره هایی است که ما از حقیقت انها مطمئن نیستیم. گزاره های مورد نظر معمولا از فرم "آیا یک رویداد خاص رخ می دهد؟" و نگرش ذهن ما از فرم "چقدر اطمینان داریم که این رویداد رخ خواهد داد؟" است. میزان اطمینان ما، قابل توصیف به صورت عددی می باشد که این عدد مقداری بین 0 و 1 را گرفته و آن را احتمال می نا میم. هر چه احتمال یک رویداد بیشتر باشد، ما مطمئن تر خواهیم بود که آن رویداد رخ خواهد داد. درواقع میزان اطمینان ما از اینکه یک واقعه (تصادفی) اتفاق خواهد افتاد.






نظریهٔ احتمالات

نظریهٔ احتمالات به شاخه‌ای از ریاضیات گویند که با تحلیل وقایع تصادفی سروکار دارد.

مانند دیگر نظریه ها، نظریه احتمال نمایشی از مفاهیم احتمال به صورت شرایط صوری (فرمولی) است – شرایطی که می‌تواند به طور جدا از معنای خود در نظر گرفته شود. این فرمولبندی صوری توسط قوانین ریاضی و منطق دستکاری، ونتیجه های حاصله، تفسیر و یا دوباره به دامنه مسئله ترجمه می شوند.

حداقل دو تلاش موفق برای به بصورت فرمول دراوردن احتمال وجود دار : فرمولاسیون کولموگروف و فرمولاسیون کاکس. در فرمولاسیون کولموگروف (نگاه کنیدبه )، مجموعه ها به عنوان واقعه و احتمالات را به عنوان میزانی روی یک سری از مجموعه ها تفسیرمی کنند. در نظریه کاکس، احتمال به عنوان یک اصل (که هست، بدون تجزیه و تحلیل بیشتر) و تاکید بر روی ساخت یک انتساب سازگار از مقادیر احتمال برای گزاره ها است. در هر دو مورد، قوانین احتمال یکی هستند مگر برای جزئیات تکنیکی مربوط به آنها.

روشهای دیگری نیز برای کمی کردن میزان عدم قطعیت، مانند نظریه Dempster-Shafer theory یا possibility theory وجود دارد ، اما آن ها به طور اساسی با آنچه گفته شد، تفاوت دارند و با درک معمول از قوانین احتمال سازگار نیستند.






تاریخچه

مطالعه علمی احتمال، توسعه ای مدرن است. قمارنشان می دهد که علاقه به ایده های تعیین کمیت برای احتمالات به هزاران سال می رسد، اما توصیفات دقیق ریاضی خیلی دیرتر به وجود آمد. دلایلی البته وجود دارد که توسعه ریاضیات احتمالات را کند می کند. در حالی که بازی های شانس انگیزه ای برای مطالعه ریاضی احتمال بودند، اما مسائل اساسی هنوز هم تحت تاثیر خرافات قماربازان پوشیده می شود.

به گفته ریچارد جفری، "قبل از اواسط قرن هفدهم، اصطلاح ‘’ احتمالی’’ به معنای قابل تایید (تصویب) و در آن معنا چه برای عقیده افراد و چه برای عمل مورد استفاده بود. در واقع افکار یا اقدام احتمالی، رفتاری بود که مردم معقول درآن شرایط از خود نشان می دادند." البته به خصوص در زمینه های قانونی ،احتمالی (به انگلیسی: Probability) همچنین می تواند به گزاره ای که شواهد خوبی برای اثبات آن وجود دارد، اطلاق شود.

گذشته از کار ابتدایی توسط Girolamo Cardano در قرن 16 اصول احتمالات به مکاتبات پیر دو فرما و بلز پاسکال (1654). کریستین هویگنس (1657) اولین مدل شناخته شده علمی از این موضوع را داد. یاکوب برنولی ARS Conjectandi (منتشرشده پس ازمرگ،1713) و اصول شانس Abraham de Moivre (1718) این موضوع را به عنوان شاخه ای از ریاضیات مطرح می کند. برای تاریخچه ای از توسعه های اولیه مفهوم احتمال ریاضی، ظهور احتمال هک ایان و علم حدس جیمز فرانکلین را ببینید.

تئوری خطاها ممکن است از Roger Cotes's Opera Miscellanea (منتشرشده پس ازمرگ،1722) سرچشمه گرفته باشد، اما شرح حالی که توماس سیمپسون در سال 1755 آماده کرد(چاپ 1756)، برای اولین بار اعمال این نظریه به بحث در مورد خطاهای مشاهده است. چاپ مجدد (1757) این شرح حال نشان می دهد که خطاهای مثبت و منفی هر دو به یک اندازه قابل پیشبینی هستند، و با اختصاص برخی از محدودیت های معین، بازه ای برای تمام خطاها ارائه می دهد.سیمپسون همچنین در مورد خطاهای پیوسته بحث می کند و یک منحنی احتمال را توصیف می کند.

پیر سیمون لاپلاس(1774) برای اولین بار سعی دراستنتاج قانونی برای توصیف مشاهدات از نظر اصول تئوری احتمالات کرد. او قانون احتمال خطاها را با یک منحنی به صورت y = \phi(x), x ، x هر نوع خطا و y احتمال آن معرفی می کند و 3 خاصیت برای این منحنی وضع می کند:

نسبت به محور y متقارن است
محور x مجانب است، احتمال خطا در \infty صفر است
مساحت زیر نمودار آن برابر 1 است.

او همچنین، در سال 1781، یک فرمول برای قانون امکان خطا ( اصطلاحی که لاگرانژ سال 1774 مورد استفاده قرار داد) ارائه کرد، اما به معادلات منظمی منجر نشد.

به طور کلی پیدایش فنون و مفاهیم مربوط به احتمالات را باید به آغاز مدل‌سازی ریاضی و استخراج و اکتشاف دانش در زمینه‌های پیچیده تر علوم نسبت داد.






تفسیرها و تحلیل‌های مفاهیم احتمالات

کلمه احتمال تعریف مفرد مستقیم برای کاربرد عملی ندارد. در واقع، چندین دسته گسترده از تفسیر احتمال، که پیروان دارای دیدگاه های مختلف (و گاهی متضاد) در مورد ماهیت اساسی احتمال وجود دارد.

Frequentists
Subjectivists
Bayesians







کاربردها

نظریه احتمال در زندگی روزمره در ارزیابی ریسک و در تجارت در بازار کالاها اعمال می شود. دولت ها به طور معمول روش های احتمالاتی را در تنظیم محیط زیست اعمال می کنند، که آن را تجزیه و تحلیل مسیر می نامند. یک مثال خوب اثر احتمال هر گونه درگیری گسترده در خاورمیانه بر قیمت نفت است، که اثرات موج واری روی اقتصاد کل جهان می گذارد. ارزیابی که توسط یک معامله گر کالا زمانیکه احتمال جنگ بیشترباشد، در مقابل حالتی که احتمال کمتری دارد، قیمت ها را بالا و پایین می فرستد و معامله گران دیگر را نیز از نظرات خود آگاه می کند. در واقع، احتمالات (در تجارت) به طور مستقل ارزیابی نمی شوند و لزوما عقلانی نیستند. تئوری های رفتار مالی برای توصیف اثر فکر گروهی در قیمت گذاری ، در سیاست، و در صلح و درگیری ظهور کردند.

می توان گفت که کشف روش های جدی برای سنجش و ترکیب ارزیابی های احتمال، عمیقا جامعه مدرن را تحت تاثیر قرار داده است. مثلا اکثر شهروندان اهمیت بیشتری به اینکه چگونه ارزیابی های احتمال وشانس ساخته می شوند، می دهند واینکه تاثیر آنها در تصمیم گیری ها بزرگتر و به ویژه در دموکراسی چگونه است.

یکی دیگر از کاربردهای قابل توجه نظریه احتمال در زندگی روزمره، قابلیت اطمینان می باشد. بسیاری از محصولات مصرفی، از جمله خودروها و لوازم الکترونیکی مصرفی، در طراحی خود به منظور کاهش احتمال خرابی(شکست) از نظریه قابلیت اطمینان استفاده می کنند. تولید کننده با توجه به احتمال خرابی یک محصول، آنرا گارانتی می کند.






علوم اجتماعی

نقش پایه و اساس را برای بیشتر علوم اجتماعی داراست. آزمونهای آماری فواصل اطمینان شیوه‌های رگرسیون (پس رفت)





توزیع احتمال
در نظریه احتمال و آمار تابع توزیع احتمال بیانگر احتمال هر یک از مقادیر متغیر تصادفی (در مورد متغیر گسسته) و یا احتمال قرار گرفتن متغیر در یک بازه مشخص (در مورد متغیر تصادفی پیوسته) میباشد. توزیع تجمعی احتمال یک متغیر تصادفی تابعی است از دامنهٔ آن متغیر بر بازهٔ 0,1. به طوری که احتمال رخدادن پیشامدهای با مقدار عددی کمتر از آن را نمایش می‌دهد.





روش‌های آمارگیری
در آمار کاربردی، روش‌های آمارگیری روش‌هایی برای نمونه‌برداری از یک جامعه آماری هستند که به منظور بهبود میزان پاسخ و دقت پاسخ به آمارگیری تدوین می‌شوند. سنجه‌های اندازه‌گیری شده آماره نام دارند که به منظور استنباط آماری در مورد کل جامعه طراحی می‌شوند. گه‌گاه آماره‌هایی توصیفی نیز گردآوری می‌شوند. نظرسنجی‌ها، پرسشنامه‌ها، و سرشماری‌ها در مورد وضعیت سلامت یا بازار مثال‌هایی از آمارگیری هستند. آمارگیری ابزار مهمی برای تحقیق در مورد جنبه‌های مختلف جامعه است و اطلاعات مهمی را در اختیار می‌گذارد؛ از جمله زمینه‌هایی که آمارگیری در آن کاربر دارد به بازاریابی، روانشناسی، سلامت عمومی، و جامعه‌شناسی اشاره کرد.





داده

به طور کلی، می‌توان همهٔ دانسته‌ها، آگاهی‌ها، داشته‌ها، آمارها، شناسه‌ها، پیشینه‌ها و پنداشته‌ها را داده یا دیتا (به انگلیسی: Data) نامید. انسان برای ثبت و درک مشترک هر واقعیت و پدیده از نشانه‌های ویژهٔ آن بهره گرفته‌است.

انسان برای نمایاندن داده‌ها نخست از نگاره و در ادامهٔ سیر تکاملی آن از حروف، شماره‌ها و نشانه‌ها کمک گرفت. برای بازنمودن داده‌ها از این موارد کمکی یا ترکیبی از آن‌ها استفاده می‌شود
در رایانه

به اعداد، حروف و علائم که جهت درک و فهم مشترک از انسان‌ها یا رایانه سرچشمه می‌گیرند داده می‌گویند. داده‌ها معمولاً از سوی انسان‌ها بصورت حروف، اعداد، علائم و در رایانه به صورت نمادهایی (همان رمزهای صفر و یک) قراردادی ارائه می‌شوند. اصطلاح داده یک عبارت نسبی است یعنی اگر موجب درک و فهم لازم و کامل دراین مرحله شده‌است به عنوان آگاهی یا اطلاعات از آن نام می‌برند و چنانچه موجب درک و فهم کامل نگردد به عنوان همان داده به شمار می‌آیند و چون هدف نهایی آگاهی و اطلاعات است باید از سوی دست‌اندرکاران (انسان یا رایانه) دستکاری یا پردازش شوند. منظور از دستکاری یا پردازش داده‌ها انجام عملیاتی از قبیل جمع، تفریق، ضرب، تقسیم، مقایسه وغیره‌است.

داده‌ها مجموعه‌ای از نمادها (برای انسان حروف، اعداد، علائم و برای رایانه رمزهای صفر و یک) هستند که حقایق را نشان می‌دهند و برای انسان از طریق رسانه‌های وی (بینایی، شنوایی، چشایی، بویایی، بساوایی) و برای رایانه از طریق لوازم ویژه (صفحه کلید موس و غیره) به دست می‌آیند.

داده‌ها امروزه فقط از سوی انسان یا رایانه پردازش می‌شوند یعنی کارهایی روی آن‌ها صورت می‌گیرد. در پردازش داده‌ها (داده‌پردازی) در رایانه ابتدا داده‌ها به رایانه وارد می‌شوند. این داده‌ها درابتدا ذخیره شده و روی آن‌ها عملیاتی (جمع، تفریق، ضرب، تقسیم و...) صورت می‌گیرد. پس از این که این عملیات (پردازش) صورت گرفت معمولاً داده‌ها به یک رایانه دیگر یا دوباره به انسان‌ها منتقل می‌شود. در اغلب گزارش‌ها و یادداشت‌های سازمانی، داده‌ها به چشم می‌خورند. برای نمونه، تاریخ و مقدار یک صورت‌حساب یا چک، جزئیات فهرست حقوق، تعداد وسایل نقلیه‌ای که از نقطهٔ خاصی در کنار جاده گذشته‌اند،... نمونه‌هایی از داده‌ها هستند.
انواع داده‌ها از نظر ساخت‌یافتگی

داده‌های ساخت‌یافته
داده‌های نیمه‌ساخت‌یافته







داده‌های زمانی
در بسیاری از کاربردهای مبتنی بر داده‌ها و اطلاعات ذخیره‌سازی و بازیافت حالا ت و وضعیت‌های سیستم در طی زمان اهمیت می‌یابد.





قضاوت

قضاوت در بافت حقوقی ، به معنی کشف حقیقت در نزاع چند طرف که در نهایت به ارائه حکمی از سوی نهاد متصدی قضاوت و لازم الاجراء از سوی حکومت برای پایان دادن به اختلاف میان آنها منجر می شود .





بیانیه
بیانیه متنی است که یک شخص یا گروه از آن برای بیان اصول، عقاید و اهداف خود به عموم استفاده می‌کند. رسمیت بیانیه‌ها، با توجه به بیان‌کنندهٔ آن‌ها و مطالب بیان‌شده، به دو دستهٔ رسمی و غیررسمی طبقه‌بندی می‌گردد.





استدلال

استدلال، ترکیب قانون‌مند قضیه(های) معلوم برای رسیدن به قضیه(های) تازه است. در استدلال، ذهن بین چند قضیه، ارتباط برقرار می‌کند تا از پیوند آن‌ها، نتیجه زاده شود و به‌این‌ترتیب نسبتی مشکوک و مبهم به نسبتی یقینی تبدیل شود.






انواع استدلال

تمثیل

تمثیل سرایت دادن حکم یک موضوع به موضوع دیگر به دلیل مشابهت آن دو به یکدیگر است.







استقرا

استقرا نوعی استدلال است که در آن ذهن از جزء به کل سیر می‌کند. یعنی چند مورد جزئی را مشاهده می‌کند و سپس یک حکم کلی می‌دهد. مثلا در چند مورد آب را حرارت می‌دهیم و می‌بینیم که در صد درجه سلسیوس می‌جوشد و از این نتیجه می‌گیریم که هر آبی در صد درجه سلسیوس می‌جوشد.







قیاس (استنتاج)

اما وقتی ذهن از قضیه‌های کلّی به نتیجه‌های جزئی می‌رسد و به عبارت مختصرتر از کلّ به جز می‌آید، آن را قیاس می‌نامند. مثال:

«۱. سقراط انسان است.

۲. هر انسان فانی است.

۳. پس سقراط فانی است.»

در استدلال قیاسی از حداقل دو قضیهٔ درست، ضرورتا و بدون هیچ تردیدی قضیهٔ درست دیگری به نام نتیجه به دست می‌آید.





حقیقت
حقیقت مفهوم و اصطلاحی است برای اشاره به اصل هر چیز استفاده می‌شود.






واژه‌شناسی

واژه حقیقت وام‌واژه‌ای است که از واژه عربی حقیقة وارد فارسی شده‌است. معادل انگلیسی واژه حقیقت واژهٔ Truth می‌باشد.






تفاوت حقیقت و واقعیت

حقیقت شامل ذات هر چیزی بوده و غیر قابل تغییر است و به همین دلیل بر خلاف واقعیت امری است که لزوماً با برهان‌های علمی قابل اثبات نیست. در بسیاری موارد حقیقت ( به دلیل اینکه از دسترس انسان به حیطه ذات به دور است )به نوع نگرش افراد بستگی پیدا میکند. بطور مثال واقعیت و حقیقت واقعه کربلا را می‌توان به این دو صورت بیان کرد.

واقعیت: حسین و یارانش به سمت کوفه حرکت کردند، لشکریان یزید در محلی به نام کربلا بر آنها حمله کردند، و حسین کشته شد. و یزید پیروز این جنگ بود.

اما حقیقت می‌تواند این باشد:

در واقعه کربلا امام حسین و یاران با وفایش برای نجات دین اسلام تصمیم به هجرت به کوفه گرفتند. اما لشکریان یزید ملعون به آنان حمله کردند و در این واقعه امام حسین به شهادت رسید. و امام حسین توانست با نثار خون خود اسلام را زنده نگاه دارد و به حق او پیروز این میدان بود.


اگر در ریشهٔ واژگان حقیقت و واقعیت دقیق شویم، تفاوت‌هایی را مشاهده می‌کنیم. ریشهٔ کلمهٔ حقیقت، "حق" به معنای راستی و درستی است و ریشهٔ کلمهٔ واقعیت، "وَقَعَ" به معنای رویدادن و یا اتفاق افتادن است. حقیقت، اشاره به ماهیت راست و درست دارد و واقعیت اشاره به امور عینی و یا اموری که اتفاق می‌افتند.

یک نگرش افراطی حقیقت یک واقعه تاریخی را جز بیان عواطف و احساسات گوینده در رابطه با آن واقعه نمی‌داند و هدف آن جذب باور به حقیقت گفته شده است.






حقیقت و واقعیت در اندیشه‌های متفکران و فلاسفه

در یونان باستان، نوعی تفکر اسطوره‌ای نسبت به مقولهٔ حقیقت و واقعیت وجود داشته که طی سیر تحول به مذهب و باورهای مذهبی تبدیل شده است. این مساله در هر تمدن دیگری نیز مشاهده می‌شود. تمدن‌های بین‌النهرین، هند و چین همگی چنین سیر تحولی را طی کرده‌اند.

تفکر اسطوره‌ای، طی تکاملش به صورت مثالی افلاطونی رسید که گونه‌ای تفکر مذهبی است. در اندیشه‌های مذهبی مانند سه مذهب زرتشتیت، مسیحیت و اسلام تمایز و جدایی واقعیت مادی و حقیقت وجود دارد.

دیدگاه عرفاً پیرامون حقیقت و واقعیت، شکل متکامل تفکرات دینی است.

آراء و اندیشه‌های متفکرین دوران مدرن و همچنین تحولاتی که در نوع نگاه انسان‌ها در جامعهٔ مدرن نسبت به حقیقت حاصل شده، باعث شده است تا مسیر گسست از اندیشه‌های اسطوره‌ای به اندیشه‌های دینی در دوران مدرن دچار واگشت و یا تغییر مسیر شود. یعنی تمایز و گسست حقیقت و واقعیت دوباره به اتحاد آن دو منجر شده است. در اصل، ظهور رئالیسم جدید و همچنین اومانیسم مدرن، نمایانگر گونه‌ای بازگشت به اصول کلاسیک یونانیان است. بشر در دوران مدرن اعتقاد یافت که طی سالیان درازی، دچار خطا شده است، از این رو دوباره به تفکر یونانی رجعت کرد.

در اندیشه‌های ماتریالیست‌ها و مارکسیست‌ها از جمله فوئرباخ، مارکس و انگلس و پیروان آن‌ها، ماده‌گرایی که خود یکی از ثمرات مدرنیته است، نمایشگر رجعت انسان به یکی انگاشتن حقیقت و واقعیت است. با این تفاوت که از نگاه ماتریالیست‌ها، حقایق، قوانینی هستند که بر واقعیات حاکم‌اند. به طور مثال، نیروی محرکهٔ تاریخ که بر وقایع تاریخی احاطه دارد، حقیقتی دربارهٔ جهان و هستی است.

اندیشه‌های فردریش ویلهلم نیچه، فیلسوف نامدار آلمانی دربارهٔ حقیقت از اهمیت بسیار بالایی برخوردار است. چون او، نوع نگاه انسان به حقیقت را دگرگون کرد و با وهمی خواندن حقیقت، به تبیین یک نگاه کاملاً نسبی‌گرایانه پرداخت. نسبیت حقیقت که با نیچه آغاز شد در نهایت به مکاتب و تفکراتی از جمله هرمنوتیک، مکتب فرانکفورت و پست‌مدرنیسم منجر شد.

اندیشه‌های نسبی‌گرایانهٔ نیچه در باب حقیقت و واقعیت به شکلی رادیکال در آراء متفکران پست مدرنی چون ژان فرانسوا لیوتار، ژاک دریدا، ژیل دلوز، میشل فوکو و ژان بودریار دوباره مطرح شد.
4:12 am

آزمایشگاه

آزمایشگاه مکانی است که برای انجام آزمایش علمی از جمله آزمایش هایی بر روی مواد شیمیایی ساخته می‌شود. در آزمایشگاه وسایل و مواد آزمایشگاهی ویژه‌ای قرار داده می‌شود که با آن‌ها می‌توان برخی آزمایش‌ها را انجام داد. برای مثال در آزمایشگاه برق، از تجهیزات، قطعات و ابزارهای برقی برای انجام آزمایش هایی بر روی سیستم های برقی استفاده می شود. آزمایشگاه‌ها را می‌توان در مدرسه‌ها و دانشگاه‌ها، صنایع، تأسیسات دولتی و ارتشی و حتی بر روی کشتی‌ها و هواگردها نیز یافت.





در دانشگاه‌ها زمانی که آموزش فراگیر در یک آزمایشگاه و با آموزش انجام یک فعالیت عملی باشد آن را «آموزش آزمایشگاهی» می‌نامند.
معمولا ازمایشگاه ها به دسته های زیر تقسیم می شوند: ازمایشگاه های فیزیک،ازمایشگاه شیمی،ازمایشگاه های کامپیوتر،ازمایشگاه های بهداشت،ازمایشگاه های پزشکی و تشخیص طبی



شیمی
شیمی (به انگلیسی: Chemistry) یکی از دانش‌های بنیادین است که به مطالعه و بررسی ساختار، خواص، ترکیبات، و دگرگونی ماده می‌پردازد. گسترۀ زیاد این دانش باعث شده است تا تعریف‌ یکپارچه‌ برای آن مشکل گردد.



واژه‌شناسی
برخلاف پندار عمومی، واژه شیمی برگرفته از زبان پارسی میانه یا باستان نیست. بلکه دارای ریشه‌ای هند و اروپایی است.



تاریخچه
کوشش های نخستین بشر برای فهمیدن طبیعت مواد و بیان چگونگی دگرگونی آن‌ها ناموفق بود. اندک اندک کوشش ها برای تبدیل مواد کم ارزش، به مواد ارزشمندی چون زر و سیم، منجر به پیدایی دانش کیمیا گردید. هر چند در ظاهر دانش کیمیا به خواست اصلی خود نرسید، اما دستاوردهای کیمیاگران در این راه به اندوخته گرانبهایی تبدیل شد که پایه گذار شیمی مدرن گردید.



نگاه گذرا

نظریه اتمی پایه و اساس علم شیمی است. این تئوری بیان می‌دارد که تمام مواد از واحدهای بسیار کوچکی به نام اتم تشکیل شده‌اند. یکی از اصول و قوانینی که در مطرح شدن شیمی به عنوان یک علم تأثیر به‌سزایی داشته، اصل بقای جرم است. این قانون بیان می‌کند که در طول انجام یک واکنش شیمیایی معمولی، مقدار ماده تغییر نمی‌کند. (امروزه فیزیک مدرن ثابت کرده که در واقع این انرژی است که بدون تغییر می‌ماند و همچنین انرژی و جرم با یکدیگر رابطه دارند.)

این مطلب به طور ساده به این معنی است که اگر ده‌هزار اتم داشته باشیم و مقدار زیادی واکنش شیمیایی انجام پذیرد، در پایان ما همچنان بطور دقیق ده‌هزار اتم خواهیم داشت. اگر انرژی از دست رفته یا به‌دست‌آمده را مد نظر قرار دهیم، مقدار جرم نیز تغییر نمی‌کند. شیمی کنش و واکنش میان اتم‌ها را به تنهایی یا در بیشتر موارد به‌همراه دیگر اتم‌ها و به‌صورت یون یا مولکول (ترکیب) بررسی می‌کند.

این اتم‌ها اغلب با اتم‌های دیگر واکنش‌هایی را انجام می‌دهند. (برای نمونه زمانی‌که آتش چوب را می‌سوزاند واکنشی است بین اتم‌های اکسیژن موجود در هوا و مواد آلی چوب. که نور بر روی مواد شیمیایی فیلم عکاسی ایجاد می‌کند شکل می‌گیرد.)

یکی از یافته‌های بنیادین و جالب دانش شیمی این بوده‌است که اتم‌ها روی‌هم‌رفته همیشه به نسبت برابر با یکدیگر ترکیب می‌شوند. سیلیس دارای ساختمانی است که نسبت اتم‌های سیلیسیوم به اکسیژن در آن یک به دو است. امروزه ثابت شده‌است که استثناهایی در زمینهٔ قانون نسبت‌های معین وجود دارد(مواد غیر استوکیومتری).

یکی دیگر از یافته‌های کلیدی شیمی این بود که زمانی که یک واکنش شیمیایی مشخص رخ می‌دهد، مقدار انرژی که بدست می‌آید یا از دست می‌رود همواره یکسان است. این امر ما را به مفاهیم مهمی مانند تعادل، ترمودینامیک می‌رساند.

شیمی فیزیک بر پایهٔ فیزیک پیشرفته (مدرن) بنا شده‌است. اصولاً می‌توان تمام سیستم‌های شیمیایی را با استفاده از تئوری مکانیک کوانتوم شرح داد. این تئوری از لحاظ ریاضی پیچیده بوده و عمیقاً شهودی است. به هر حال در عمل و بطور واقعی تنها بررسی سیستم‌های سادهٔ شیمیایی قابل بررسی با مفاهیم مکانیکی کوانتوم امکان‌پذیر است و در اکثر مواقع باید از تقریب استفاده کرد(مانند تئوری کاری دانسیته). بنابراین درک کامل مکانیک کوانتوم برای تمامی مباحث شیمی کاربرد ندارد؛ زیرا نتایج مهم این تئوری (بخصوص اربیتال اتمی) با استفاده از مفاهیم ساده‌تری قابل درک و به‌کارگیری هستند.

با اینکه در بسیاری موارد ممکن است مکانیک کوانتوم نادیده گرفته شود، اما از مفهوم اساسی آن، یعنی کوانتومی کردن انرژی، نمی‌توان صرف نظر کرد. شیمی‌دان‌ها برای بکارگیری کلیه روش‌های طیف نمایی به آثار و نتایج کوانتوم وابسته‌اند. علم فیزیک هم ممکن است مورد بی توجهی واقع شود، اما به هر حال برآیند نهایی آن (مانند رزونانس مغناطیسی هسته‌ای) پژوهیده و مطالعه می‌شود.

یکی دیگر از تئوری‌های اصلی فیزیک مدرن که نباید نادیده گرفته شود نظریه نسبیت است. این نظریه که از دیدگاه ریاضی پیچیده‌است، شرح کامل فیزیکی علم شیمی است. مفاهیم نسبیتی تنها در برخی از محاسبات خیلی دقیق ساختمان هسته، به‌ویژه در عناصر سنگین‌تر، کاربرد دارند و در عمل تقریباً با شیمی پیوند ندارند.



بخش‌های اصلی دانش شیمی عبارت‌اند از:

شیمی تجزیه، که به تعیین ترکیبات مواد و اجزای تشکیل دهنده آن‌ها می‌پردازد.
شیمی آلی، که به مطالعهٔ ترکیبات کربن‌دار، غیر از ترکیباتی چون دو اکسید کربن (دی اکسید کربن) می‌پردازد.
شیمی معدنی، که به اکثریت عناصری که در شیمی آلی روی آنها تاکید نشده و برخی خواص مولکولها می‌پردازد.
شیمی فیزیک، که پایه و اساس کلیهٔ شاخه‌های دیگر را تشکیل می‌دهد، و شامل ویژگی‌های فیزیکی مواد و ابزار تئوری بررسی آنهاست.

دیگر رشته‌های مطالعاتی و شاخه‌های تخصصی که با شیمی پیوند دارند عبارت‌اند از: علم مواد، مهندسی شیمی، شیمی بسپار، شیمی محیط زیست و داروسازی.



شیمی‌دان
شیمی‌دان کسی است که بر دانش شیمی اشراف دارد و یا روی آن مطالعه می‌کند.شیمی‌دان‌ها معمولا بر روی ترکیب مواد و خواص آنها کار می‌کنند.



تاریخ
نخستین فرآیند شیمیایی که بشر آن را آموخت ، سوختن است. آتش می‌توانست همه مواد را از نظر ماهیت تغییر دهد.کشف آهن و مس زندگی انسان‌ها را تغییر داد و پس از کشف طلا به عنوان یک فلز قیمتی ، بسیاری بر آن شدند تا راهی بیابند که مس را به آن تبدیل کنند.تبدیل مس به طلا را کیمیا و کسانی که بر آن اهتمام می‌ورزیدند را کیمیاگر نامیدند. بدین ترتیب کیمیاگران ، نخستین شیمی‌دان‌ها بودند.پس از لاوازیه ، دانش شیمی وارد دانشگاه‌ها شد و از آن پس به یک مطالعه تجربی دنبال می‌شد و اندازه‌گیری‌ها و ارزیابی‌های کیفی و کمی آن به ثبت رسید.



آموزش
آموزش در شیمی تقربیا در همه کشورهای دنیا در دوران مدرسه آغاز می‌شود؛ اما آموزش تخصصی آن در دانشگاه آغاز می‌شود.برای شیمی‌دان‌ها ،کاردانی ، کارشناسی ، کارشناسی ارشد ، دکتری و پسادکتری در همه جهان قابل پی‌گیری است.


جایزه‌ها
جایزه نوبل مهم‌ترین و معتبرترین جایزه در شیمی به شمار می‌رود. نشان پریسلی ، جایزه ولف ، جایزه عبدالسلام و جایزه پاولینگ از مهمترین جوایزی هستند که به شیمی‌دان‌ها اعطا می‌شود.



شیمیدانان معروف تاریخ
دمیتری مندلیف،سوانت آرنیوس ،آمادئو آووگادرو ،ویلهلم اسوالد،هرمن اشتودینگر ،هانس کریستین اورستد ،یونس یاکوب برزلیوس ،هانری بکرل،ادوارد بوخنر ،نیلز بور ،رابرت بویل ،سرگی میخائیلوویچ پروکودین گورسکی ،جوزف پریستلی ،لینوس پاولینگ ،جابر بن حیان ،جان دالتون ،پیتر دبای،هامفری دیوی ،ارنست رادرفورد ،محمد زکریای رازی ،کارل زیگلر ،گلن سیبورگ





تاریخ شیمی

تاریخ شیمی به سلسله اتفاقاتی اطلاق می‌شود که از زمان باستان تاکنون برای دانش شیمی اتفاق افتاده‌است. تا ۱۰۰۰ سال پیش از میلاد، تمدن‌های باستان از ابزارهایی استفاده می‌کردند که سرانجام اساس تنوع شاخه‌های شیمی شدند. برای نمونه استخراج فلزها از سنگ معدن، سفالگری با استفاده از لعاب،‎تخمیر آبجو و شراب، تهیهٔ رنگدانه برای لوازم آرایشی و نقاشی، استخراج مواد شیمیایی از گیاهان برای دارو و عطر، تهیهٔ پنیر، ریسندگی، دباغی کردن چرم، تهیهٔ صابون از چربی، ساخت شیشه و ساخت آلیاژهایی مانند برنج.

در گذشته تلاش برای بیان طبیعت مواد و چگونگی دگرگونی آن‌ها ناموفق بود. دانش پیشرفته‌تر کیمیاگری نیز در این مورد ناتوان بود. به هرحال دانش کیمیا به کمک انجام تحقیقات اولیه و ثبت نتیجه‌ها، پایه‌گذار شیمی مدرن بود. تغییر نگرش در شناخت مواد، زمانی شروع شد که رابرت بویل در سال ۱۶۶۱ در کتاب شیمی‌دان شکاک میان شیمی و کیمیا تفاوت قائل شد. پس از آن شیمی با تلاش‌های آنتوان لاووازیه و ارائه قانون پایستگی جرم، به یک دانش تکامل‌یافته تبدیل شد. دغدغهٔ هر دو دانش کیمیا و شیمی شناخت طبیعت مواد و چگونگی دگرگونی آن‌ها بود، اما تنها شیمی از شیوه‌های علمی قوی بهره‌مند شد. با کوشش‌های ویژهٔ جوسایا ویلارد گیبز تاریخ شیمی با ترمودینامیک رابطهٔ عمیقی پیدا کرد.

تاریخ شیمی از آغاز تاکنون با صنعت رابطه‌ای مستقیم داشته‌است. در ابتدای دوران مدرن در اروپا، شیمی از ترکیب دانسته‌های باستان با فعالیت‌های دانشمندان مسلمان در قرون وسطی توسعه یافت. سپس شیمی در کنار فیزیک توانست ماهیت درونی مواد را شرح دهد. امروزه شیمی دانشی بسیار پیچیده‌است که بخش‌های زیادی با اهداف متنوع در زمینه‌های مختلف فناوری دارد.




دوران باستان (۴۰۰۰–۳۰۰ پ. م)
مسلماً نخستین واکنش شیمیایی که بشر توانست آن را کنترل و مهار کند، سوختن و آتش بود. آتش برای مردم باستان، یک نیروی عرفانی بود که می‌توانست یک ماده را به یک مادهٔ دیگر تبدیل کند در حالی که نور و گرما نیز می‌بخشد. آتش بر بسیاری از جوامع تأثیر گذاشت. به طوری که فعالیت‌های روزمره‌ای مانند آشپزی و تهیه نور و گرما تا فناوری‌هایی مانند سفالگری، تهیهٔ آجر و ذوب فلزها همگی وابسته به آتش بودند. آتش سبب کشف شیشه و نحوهٔ پالایش فلزها شد و همین امر پایه‌گذار دانش متالوژی یا شناخت مواد شد. در اوایل نیاز زیادی به دانستن شیوه‌های پالایش فلزها بود به ویژه در مصر باستان (۲۶۰۰ پ. م) که طلا فلزی گرانبها به شمار می‌آمد. کشف آلیاژها باعث شروع عصر برنز شد. نخستین شواهدی که نشان می‌دهد انسان‌های باستان در زمینهٔ دانش متالوژی فعالیت داشتند، مربوط به هزاره‌های پنجم و ششم پیش از میلاد است. پس از آن دانش متالوژی برای یافتن چگونگی ساخت سلاح‌های جنگی برتر به کار گرفته‌شد.



مصر باستان
مصریان باستان در زمان پیش از پادشاهی قدیمی توانستند نوعی سفال براق بسازند که به سفال مصری معروف است. در آن زمان این صنعت گرانبها تلقی می‌شد چراکه این سفال‌ها از خاک رس تهیه نمی‌شدند و از سیلیس و مقادیر کمی آهک و جوش شیرین به دست می‌آمدند. مصریان باستان در زمینهٔ متالوژی نیز توانا بودند و نوشته‌هایی به خط هیروگلیف مصری مربوط به ۲۶۰۰ سال پیش از میلاد موجود است که طلا را توصیف می‌کنند. کیمیا در میان مصریان باستان نیز رواج داشت. کیمیای مصری را بیشتر از طریق نوشته‌های فیلسوفان یونانی می‌توان شناخت. دیوکلتیان، امپراطور روم هنگام حمله به مصر دستور سوزاندن اسنادی که مربوط به کیمیا باشد را داد و به همین دلیل نوشته‌های مصری کمی دربارهٔ کیمیا باقی مانده‌اند که مهم‌ترین آن‌ها پاپیروس استکهلم و پاپیروس لیدن هستند. مصریان عقیده داشتند که علم کیمیا توسط تحوت، خدای دانش و خرد پدید آمده‌است.



ایران باستان
سفالینه‌های خاکستری با لعاب سیاه در ۲۰۰۰ سال پیش از میلاد در تپه حصار و تپه سیلک به وجود آمدند. این سفال‌ها نخستین نوع سفال‌های لعاب‌داری هستند که شناخته‌شده‌اند. ایرانیان باستان برای خودآرایی از موادی مانند سرخاب، وسمه و سرمه استفاده می‌کردند که این مواد را از چربی حیوانات یا خاکستر به دست می‌آوردند و به آن‌ها رنگدانههای طبیعی می‌افزودند. در آن دوران فیروزه به خاطر رنگ زیبایش مورد توجه بود و ایران تنها کشوری بود که این سنگ گرانبها را استخراج می‌کرد.



یونان باستان
فیلسوفان تلاش می‌کردند تا بدانند چرا مواد مختلف خاصیت‌های متفاوت (رنگ، بو و غلظت) و حالت‌های متفاوت (جامد، مایع و گاز) دارند و با شیوه‌های متفاوت با یکدیگر واکنش می‌دهند. در این زمان فیلسوفان یونانی نخستین نظریه‌ها را دربارهٔ شیمی و طبیعت ارائه کردند که تاحدودی این نظریه‌ها متأثر از فرهنگ و تمدن‌های زمان خود بود. برای مثال، تالس تصور می‌کرد آب عنصر اصلی سازندهٔ جهان است. دویست سال پس از او ارسطو از «عناصر چهارگانه» سخن گفت و اعتقاد داشت که جهان از چهار عنصر آب، هوا، خاک و آتش ساخته‌شده‌است.

ارائهٔ نظریهٔ اتمی به دوران یونان باستان بازمی‌گردد. نظریهٔ اتمی مربوط به ۴۴۰ سال پیش از میلاد است. لوکرتیوس (۵۰ پ. م) در کتابی به نام «طبیعت چیزها» (به یونانی: De Rerum Natura) به اندیشه‌های دموکریت و لئوکیپوس اشاره می‌کند. دموکریت ادعا می‌کرد که همهٔ مواد از ذره‌های تجزیه‌ناپذیری به نام اتم تشکیل شده‌اند.

ساعت : 4:12 am | نویسنده : admin | مطلب بعدی
آزمایشگاه شیمی | next page | next page