مقایسه با متدهای دیگر

متدهایی در زنجیره‌ی بین انطباقی تا پیشگویانه وجود دارند. متدهای چابک در بخش انطباقی این زنجیره قرار دارند. متدهای انطباقی بر انطباق سریع با واقعیات تغییریافته متمرکز است. وقتی نیازهای یک پروژه تغییر می‌کند، یک تیم انطباقی نیز تغییر می‌کند. یک تیم انطباقی به سختی توضیح می‌دهد که در آینده دقیقاً چه اتفاقی خواهد افتاد.





در متد انطباقی هرچه تاریخ دورتر باشد، ابهام در بیان اینکه در آن تاریخ چه اتفاقی خواهد افتاد، بیشتر است. یک تیم انطباقی نمی‌تواند وظایفی را که اعضا در هفته‌ی آینده خواهد داشت گزارش دهد، تنها می‌تواند ترکیب کارهایی را که برای ماه آینده قرار است انجام شود بیان کند. وقتی در مورد انتشار شش ماه از حالا سؤال می‌شود، یک تیم انطباقی ممکن است فقط بتواند بیانیه‌ی مأموریت (برای آن انتشار) یا بیانیه‌ی ارزش موردانتظار در مقابل هزینه را گزارش دهد.

در مقابل، متدهای پیشگویانه، بر تحلیل و برنامه‌ریزی آینده به صورت جزئی و برای ریسک‌های شناخته‌شده تمرکز دارد. در نهایت، یک تیم پیشگویانه می‌تواند دقیقاً گزارش دهد که چه ترکیب کار و چه وظایفی در سرتاسر فرایند توسعه برنامه‌ریزی شده‌است. متدهای پیشگویانه بر فاز ابتدایی و اثربخش تحلیل تکیه دارد و اگر این فاز با اشتباه زیادی پیش رود، ممکن است جهت پروژه به سختی اصلاح شود. تیم‌های پیشگویانه اغلب یک هیأت کنترل تغییر ایجاد می‌کنند تا اطمینان یابند که تنها به تغییرات با ارزش فکر می‌شود.

متدهای رسمی، بر خلاف متدهای انطباقی و پیشگویانه، بر تئوری علوم کامپیوتری با طیف گسترده‌ای از انواع مفاهیم ثابت تکیه دارد. یک متد رسمی می‌کوشد تا نبود خطاها را با درجه‌ای از جبرگرایی ثابت کند. بعضی متدهای رسمی مبتنی بر بررسی مدل هستند و مثال‌های متضادی برای کدهایی که نمی‌توان ثابت کرد، فراهم می‌کنند. تیم‌های چابک ممکن است متدهای رسمی بسیار منظمی به کار گیرند.

متدهای چابک که از دهه‌ی 90-1980 توسط James Martin و دیگران حمایت شدند، اشتراکات زیادی با «توسعه‌ی سریع اپلیکیشن‌ها» دارند. علاوه بر متدهای مبتنی بر تکنولوژی، متدهای مشتری‌محور و طراحی‌محور (مانند نمونه‌سازی سریع تجسم‌محور که توسط Brian Willison توسعه یافت)، مشتریان و کاربران نهایی را به تسهیل توسعه‌ی چابک نرم‌افزار تشویق می‌کنند.

در سال 2008 مؤسسه‌ی مهندسی نرم‌افزار (SEI) گزارش فنی «CMMI یا چابک: چرا هر دو نه؟» را برای روشن کردن اینکه مدل یکپارچه‌ی قابلیت بلوغ (CMMI) و مدل چابک هر دو می‌توانند وجود داشته باشند، منتشر کرد. CMMI ورژن 1.3 شامل تیپ‌هایی برای پیاده‌سازی چابک و CMMI است.

یکی از تفاوت‌های بین چابک و آبشاری، این است که تست نرم‌افزار در نقاط مختلفی در چرخه‌ی عمر توسعه‌ی نرم‌افزار انجام می‌شود. در مدل آبشاری، یک فاز تست به صورت جداگانه بعد از پیاده‌سازی وجود دارد. در چابک XP، به طور هم‌زمان با پیاده‌سازی انجام می‌شود. به طور کلی اگر بیشتر ناشناخته‌ها شناخته شوند (مانند نیازمندی‌های خوبی که تا آن زمان تحلیل شده‌اند)، رویکرد پیشگویانه ممکن است مناسب‌تر باشد. اما اگر ناشناخته‌های شناخته‌نشده‌ی زیادی وجود داشته باشد (مانند نیازمندی‌هایی که ضعیف شناخته‌شده‌اند و هنوز بهبود نیافته‌اند)، رویکرد چابک اجازه‌ی بلوغ تدریجی و پیاده‌سازی را می‌دهد.






متدهای چابک

متدهای معروف توسعه‌ی چابک نرم‌افزار عبارتند از:

مدل‌سازی چابک
فرایند یکپارچه‌ی چابک (AUP)
Crystal Clear
متدهای Crystal
متدهای توسعه‌ی سیستم‌های دینامیک (DSDM)
برنامه‌نویسی اکستریم (XP)
توسعه‌ی ویژگی‌محور (FDD)
طراحی گرافیکی سیستم (GSD)
توسعه Kanban
توسعه Lean
Scrum
ردیابی سرعت







سازمان‌دهی متد

در ، اصطلاحات متفاوتی به مفهوم متد انطباقی برمی‌گردد، شامل «سازمان‌دهی متد»، «تطابق قطعات متد» و «مهندسی موقعیتی متد». مناسب‌سازی متد به صورت زیر تعریف می‌شود:

فرایند یا قابلیتی که در آن عوامل انسانی یک رویکرد توسعه‌ی سیستم را برای موقعیت پروژه‌ای خاص از طریق تغییرات پاسخگو در، و اثرات متقابل دینامیک بین زمینه‌ها، مفاهیم و قطعات متد تعریف می‌کنند.

به طور بالقوه، تقریباً تمام متدهای چابک برای سازمان‌دهی متد مناسب هستند. حتی متد DSDM نیز با این هدف به کار گرفته شده و با موفقیت در یک زمینه‌ی CMM سازمان‌دهی می‌شود. اقتضای وضعیت، به عنوان یک مشخصه‌ی متمایز بین متدهای چابک و متدهای توسعه‌ی سنتی نرم‌افزار مطرح است، دومی نسبتاً جدی‌تر و تجویزی است.

پیاده‌سازی کاربردی این است که متدهای چابک به تیم‌های پروژه اجازه‌ی تطبیق روش‌های کاری را با نیازهای پروژه‌های منحصربه‌فرد بدهند. روش‌ها فعالیت‌ها و محصولات به هم پیوسته‌ای هستند که بخشی از یک چارچوب متد را تشکیل می‌دهند. در یک سطح خیلی بالاتر، فلسفه‌ی پشت متد، شامل تعدادی اصول است که می‌توانند منطبق باشند (Aydin، 2004).

برنامه‌نویسی Extreme (XP) نیاز به انطباق متد را شفاف می‌کند. یکی از ایده‌های بنیادین XP این است که هیچ فرایندی برای تمام پروژه‌ها مناسب نیست، اما ترجیحاً روش‌ها باید برای هر پروژه‌ی منحصربه‌فرد سازمان‌دهی مناسب‌سازی شوند. انطباق جزئی روش‌های XP، که توسط Beck طرح شد، در موارد مختلفی گزارش شده است.

یک روش سازمان‌دهی پیشنهاد می‌کند که یک نقشه‌ی راه و راهنماهای مناسب برای انطباق با تمام روش‌ها ارائه می‌دهد. روش RDP برای سفارشی‌سازی XP طراحی شده است. این روش، برای اولین بار در کارگاه APSO در کنفرانس ICSE 2008، به عنوان یک مقاله‌ی تحقیقاتی طولانی طرح شد، و اکنون نیز تنها متد طراحی‌شده و قابل‌اجرا برای سفارشی‌سازی XP است. اگرچه این روش به طور خاص راه‌حلی برای XP است، اما قابلیت توسعه برای سایر متدولوژی‌ها را دارد.

در نگاه اول، این روش در گروه متدهای استاتیک انطباق به نظر می‌رسد، اما آزمایش‌ها با روش RDP می‌گوید این روش می‌تواند مانند یک متد دینامیک انطباق عمل کند. تفاوت ظریفی بین متدهای استاتیک انطباق و متدهای دینامیک انطباق وجود دارد. فرض کلیدی در مورد متد استاتیک انطباق این است که زمینه‌ی پروژه در ابتدای یک پروژه داده می‌شود و در طول اجرای پروژه نیز ثابت می‌ماند. نتیجه یک تعریف استاتیک از زمینه‌ی پروژه است. با دادن چنین تعریفی و با استفاده از مسیر نقشه‌ها می‌توان تعیین کرد کدام قسمت متد ساخت‌یافته، بر اساس مجموعه‌ای از معیارهای از پیش‌تعیین‌شده، باید برای آن پروژه‌ی خاص به کار رود. در مقابل، متد دینامیک انطباق، فرض می‌کند پروژه در یک زمینه‌ی نوظهور واقع شده است. یک زمینه‌ی نوظهور به این موضوع اشاره می‌کند که یک پروژه با فاکتورهای نوظهوری سر و کار خواهد داشت که بر شرایط مربوطه اثر می‌گذارند، اما قابل‌پیش‌بینی نیستند. همچنین به این معناست که زمینه‌ی پروژه ثابت نیست و در طول اجرا تغییر می‌کند. در چنین موردی نقشه‌های مسیر تجویزی مناسب نیستند. مفهوم کاربردی متد دینامیک انطباق این است که مدیران پروژه اغلب ناچارند در طول اجرای یک پروژه، قسمت‎های ساخت‌یافته را تغییر دهند یا حتی قسمت‌های جدیدی ابداع کنند (Aydin و همکاران، 2005).






چرخه‌ی عمر توسعه‌ی نرم‌افزار

متدهای چابک بر جنبه‌های متفاوتی از چرخه‌ی عمر توسعه‌ی نرم‌افزار تمرکز دارند. بعضی از آنها بر روش‌ها (برنامه‌نویسی extreme، برنامه‌نویسی فعال مدل‌سازی چابک) تمرکز دارند، در حالی که بعضی دیگر بر مدیریت پروژه‌های نرم‌افزاری تأکید دارند (مانند رویکرد scrum). هنوز، رویکردهایی وجود دارند که تمام چرخه‌ی عمر توسعه را پوشش می‌دهند (متدهای توسعه‌ی سیستم دینامیک (DSDM) و Rational Unified Process (RUP))، در حالی که بیشتر آنها از فاز تعیین نیازمندی‌ها مناسب هستند (مثلاً ویژگی‌محور در توسعه یا FDD). بنابراین، یک تفاوت آشکار بین متدهای گوناگون توسعه‌ی چابک نرم‌افزار در این مورد است. اگرچه DSDM و RUP نیازی به رویکردهای مکمل برای پشتیبانی از توسعه‌ی نرم‌افزار ندارند، بقیه‌ی آنها با درجات متفاوت این نیاز را دارند. DSDM می‌تواند توسط هر کسی به کار رود (علیرغم اینکه فقط اعضای DSDM می‌توانند محصولات یا خدمات DSDM را عرضه کنند). RUP یک محیط توسعه تجاری فروشی است (Abrahamsson، Salo، Rankainen & Warsta، 2002).






اندازه‌گیری میزان چابکی

اگرچه چابکی به عنوان ابزاری برای پایان دیده می‌شود، تعدادی رویکرد پیشنهاد شده‌اند که کیفیت چابکی را تعیین می‌کنند. اندازه‌گیری شاخص‌های چابکی (AIM) پروژه‌ها را برای کسب یک امتیاز کل، در مقابل تعدادی از فاکتورهای چابکی امتیازدهی می‌کنند. نام مشابه «شاخص اندازه‌گیری چابکی»، توسعه‌ها را در برابر 5 بعد یک پروژه‌ی نرم‌افزاری (مدت‌زمان، ریسک، تازگی، تلاش و تعامل) امتیازدهی می‌کند. تکنیک‌های دیگر مبتنی بر اهداف قابل‌اندازه‌گیری هستند.

مطالعه‌ی دیگری با استفاده از ریاضیات فازی (fuzzy)، می‌گوید سرعت پروژه می‌تواند یکی از استانداردهای چابکی باشد. خودارزیابی‌هایی در چابکی وجود دارد که تعیین می‌کند آیا یک تیم از روش‌های چابک استفاده می‌کند یا خیر (آزمون Nokia، آزمون Karlskrona، 42 آزمون نکته‌ای).

اگرچه چنین رویکردهایی برای اندازه‌گیری چابکی پیشنهاد شده‌اند، کاربرد عملی چنین معیارهایی هنوز دیده می‌شود. از لحاظ تاریخی، در پروژه‌های چابکی که نتوانسته‌اند نتایج مطلوبی تولید کنند، کمبود داده وجود دارد. می‌توان مطالعاتی را یافت که پروژه‌ها را با پیاده‌سازی ناکارآمد یک (یا چند) متد چابک، ضعیف گزارش کرده‌اند، اما هیچ‌جا احساس نشد که به درستی اجرا شده‌اند و در تحویل تعهدات خود شکست خورده‌اند.

«این ممکن است یک دلیل بی‌میلی برای انشتار مقالات در مورد پروژه‌های ناموفق باشد، یا ممکن است نشان‌دهنده‌ی آن باشد که وقتی متدهای چابک کار می‌کنند که پیاده‌سازی درست انجام شود.». اگرچه، داده‌هایی از ROI توسعه‌ی چابک نرم‌افزار از CSIAC ROI Dashboard در دسترس است.).






آزمودگی و پذیرش

یکی از مطالعات اخیر که دستاوردهای کیفیت، بهره‌وری و رضایت کسب‌وکار با استفاده از متدهای چابک را گزارش می‌دهد، یک بررسی بود که توسط Shine Technologies از نوامبر 2002 تا ژانویه‌ی 2003 انجام شد.

یک بررسی مشابه در سال 2006 توسط Scott Ambler (رهبر تمرین توسعه‌ی چابک با گروه متدهای عقلانی IBM) انجام شد که همین فواید را بیان کرد. در بررسی انجام‌شده توسط VersionOne (یک تهیه‌کننده‌ی نرم‌افزار برای برنامه‌ریزی و پیگیری پروژه‌های توسعه‌ی چابک نرم‌افزار) در سال 2008، 55 درصد پاسخ‌دهندگان گفتند متدهای چابک در 90 تا 100 درصد موارد موفق بوده‌اند.

برخی دیگر ادعا می‌کنند متدهای توسعه‌ی چابک بسیار جوان‌تر از آن هستند که نیاز به اثبات گسترده و علمی موفقیت‌شان داشته باشند.






سازگاری

بخش وسیعی از توسعه‌ی چابک نرم‌افزار به صورت یک زمینه‌ی تحقیقاتی پرکار باقی‌مانده است. به طور گسترده توسعه‌ی چابک برای انواع مشخصی از محیط‌ها، شامل تیم‌های کوچک متخصصان، مناسب‌تر به نظر می‌رسد. در سال‌های اخیر برخورد مثبت با متدهای چابک در دامنه‌ی Embedded در اروپا مشاهده شده است. بعضی مواردی که ممکن است بر موفقیت یک پروژه‌ی چابک، تأثیر منفی بگذارد، عبارتند از:

تلاش‌های توسعه در مقیاس وسیع (>20 توسعه‌گر)، اگرچه استراتژی‌های مقیاس‌گذاری و مدارک بعضی پروژه‌های بزرگ توضیح داده شده است؛
تلاش‌های توسعه‌ی توزیع‌شده (تیم‌های غیرهم‌مکان). استراتژی‌ها در «پل‌بندی و فاصله» و «استفاده از فرایند چابک نرم‌افزار با توسعه‌ی دور دورکاری» توضیح داده شده است؛
تحمیل یک فرایند چابک به یک تیم توسعه؛ سیستم‌های مأموریت بحرانی که در آنها شکست، به هر قیمتی یک گزینه نیست (مثل نرم‌افزار کنترل ترافیک هوایی).

اخیراً موفقیت‌ها، چالش‌ها و محدودیت‌هایی که در انطباق با متدهای چابک در یک سازمان بزرگ مشاهده می‌شوند، مستندسازی شده‌اند. در شرایط برون‌سپاری توسعه‌ی چابک، Michael Hckett، معاون رئیس شرکت LogiGear گفته‌است «یک تیم دورکار... باید این موارد را داشته باشد: تخصص، تجربه، مهارت‌های ارتباطی خوب، تفاهم بین فرهنگ‌ها، اعتماد و تفاهم بین اعضا، گروه‌ها و با یکدیگر.». متدهای چابک به طور گسترده برای توسعه‌ی محصولات نرم‌افزاری به کار رفته‌اند، بعضی از آنها نیز از خصوصیات مشخصی از نرم‌افزار، مانند فناوری‌های موضوع استفاده می‌کنند. اگرچه این فناوری‌ها می‌توانند برای محصولات غیر نرم‌افزاری (مانند کامپیوترها، وسایل نقلیه‌ی موتوری، وسایل پزشکی، خوراک و پوشاک) نیز به کار گرفته شوند. همچنین تحلیل ریسک می‌تواند برای انتخاب بین متدهای انطباقی (چابک یا ارزش‌محور) و پیشگویانه (برنامه‌محور) استفاده شود. Barry Boehm و Richard Turner می‌گویند که هر سوی این زنجیره پایه‌ی اصلی (home ground) خاص خود را دارد






نقد

ممکن است متدولوژی‌های چابک در سازمان‌های بزرگ و انواع خاصی از پروژه‌ها ناکارآمد باشند.

متدهای چابک برای پروژه‌های توسعه‌ای و غیردائمی بهتر به نظر می‌رسد. بسیاری از سازمان‌ها باور دارند متدولوژی‌های چابک بسیار قوی هستند و با یک رویکرد مخلوط که ترکیبی از المان‌های رویکردهای چابک و برنامه‌محور است، سازگار می‌شوند.







بسته نرم‌افزاری

یک بستهٔ نرم‌افزاری یا بستهٔ کاربردی مجموعه‌ای از برنامه‌های رایانه‌ای است که معمولاً شامل نرم‌افزارهای کاربردی و ابزارهای برنامه‌نویسی با قابلیت‌های مرتبط است که معمولاً دارای توانایی‌هایی در مبادله اطلاعات و به اشتراک گذاشتن واسط کاربر است.

گاهی سازندگان نرم‌افزارها بسته‌هایی را که چیزی بیش از جمع‌آوری نسخه‌های برنامه قبلی است را با هزینه‌ای کمتر معرفی می‌کنند.







افزونه نرم‌افزاری

افزونه (به انگلیسی: Extension)، برنامه‌ای در یک پرونده است که برای افزایش قابلیت‌ها یا داده‌های موجود در یک برنامهٔ پایه‌ای‌تر استفاده می‌شود. در واقع نوعی فهرست دستورهایی است که به صورت مستقیم در برنامه شامل می‌شود. هنگام نصب آن احتمالاً خواسته می‌شود که یک یا چند مرحله برای تکمیل نصب پیموده شود که گاه نیز به صورت خودکار این مراحل انجام می‌شود.

گاه این عبارت اغلب به غلط با افزایه اشتباه گرفته می‌شود. افزونه و افزایه هر دو نوعی از برافزا هستند.






افزونه و افزایه

افزونه‌ها کمی با افزایه‌ها (به انگلیسی: Plug-in) متفاوتند. بر خلاف افزایه‌ها که معمولاً از واسط کاربری برنامه کاربردی استفاده می‌کنند و چارچوبی معین برای عملکردهایشان دارند، اما افزونه‌ها معمولاً محدودیت کمتری داشته و بعضاً واسط کاربری مربوط به خود را دارند. و همینطور افزایه‌ها دارای قابلیت‌های محدودتری هستند.








ماشین مجازی

در علم کامپیوتر ماشین مجازی (به انگلیسی: Virtual machine) نرم‌افزاری است که بر روی یک کامپیوتر پیاده‌سازی می‌شود. این پیاده‌سازی به‌گونه‌ای است که تصور می‌شود یک کامپیوتر واقعی در حال اجرای برنامه‌های ماست.






تعاریف

یک ماشین مجازی، در ابتدا توسط Popek and Goldberg به صورت "یک نسخه کپی شده از روی یک ماشین واقعی، به صورت کارا و ایزوله شده" تعریف شد. استفاده‌های کنونی، ماشین‌های مجازی‌ای را شامل می‌شود که هیچ ارتباط با سخت‌افزار واقعی ندارند.

ماشین‌های مجازی، بر اساس استفاده و درجه ارتباط به ماشین واقعی، به دو دسته اصلی تقسیم می‌شوند. یک ماشین مجازی سیستمی یک زیرساخت محاسباتی کامل را فراهم می‌کند که از اجرای یک سیستم‌عامل کامل پشتیبانی می‌کند. در مقابل، یک ماشین مجازی فرایند، برای اجرای یک برنامه واحد طراحی شده، که این به این معناست که صرفاً یک از یک فرایند خاص پشتیبانی می‌کند. یک ویژگی مهم یک ماشین مجازی، این است که نرم‌افزاری که درون آن در حال اجراست، با منابع و سطوح انتزاعی که توسط ماشین مجازی اعمال می‌شود، محدود شده‌است – یعنی نمی‌تواند از دنیای مجازی خود خارج شود.

مثال: یک برنامه که به زبان جاوا نوشته شده‌است، با ارسال فرامین و دریافت نتایج مورد نظرش، خدماتی از نرم‌افزار ماشین مجازی جاوا (JVM) می‌گیرد. با ارائه این خدمات به برنامه، نرم‌افزار جاوا، به عنوان یک ماشین مجازی عمل می‌کند.







نرم‌افزار آزاد و متن‌باز
نرم‌افزار آزاد و متن‌باز (به انگلیسی: Free and open source software یا FLOSS، F/OSS، FOSS)، نرم‌افزاری است که به‌منظور تامین حق کاربران برای مطالعه، تغییر، و بهبود طراحی آن، با دردسترس‌بودن کد مبدأ نرم‌افزار، به‌شکل آزاد پروانه‌دار گشته است.








نرم‌افزار قابل حمل
نرم‌افزار قابل حمل (Portable application) به نرم‌افزاری گفته می‌شود که بدون نیاز به نصب بر روی سیستم‌عامل از روی لوح فشرده, یواس‌بی فلش درایو، حافظه فلش یا فلاپی‌دیسک قابل اجرا باشد.







نرم‌افزار کاربردی

نرم‌افزار کاربردی (به انگلیسی: Application software) عبارت است از نرم‌افزاری که با استفادهٔ مستقیم از منابع و قابلیت‌های رایانه کاری را مستقیماً برای کاربر انجام می‌دهد. باید توجه داشت که این عبارت در مقابل عبارت نرم‌افزار سیستمی معنی پیدا می‌کند.

نرم‌افزار سیستمی در مقابل در پس‌زمینه عمل می‌کند و خدماتی را فراهم می‌کند که دیگر نرم‌افزارها و یا سیستم‌عامل می‌توانند برای انجام کارهای خود از آن استفاده کنند. اما در عوض معمولاً مستقیماً با کاربر عادی در تماس نیست و خدماتی را به او ارایه نمی‌دهد.

در عمل بیشتر نرم‌افزارهایی که کاربران با آن‌ها سر و کار دارند از این دسته محسوب می‌شوند. برای مثال می‌توان به نرم‌افزارهای رومیزی یعنی واژه‌پردازها، صفحه گسترده‌ها، نرم‌افزارهای طراحی گرافیکی، بازی‌های رایانه‌ای و امثال آن‌ها اشاره کرد.

بسیاری نرم‌افزارهای کاربردی، برای توسعه‌دهندگان ابزار رابط برنامه‌نویسی کاربردی هم فراهم می‌کنند تا بتوان از قابلیت‌های نرم‌افزار در نرم‌افزارهای جدید استفاده کرد. برای مثال نرم‌افزار ادوبی آکروبات هنگام نصب ای‌پی‌آی فراهم می‌کند که برنامه‌نویس می‌تواند با استفاده از آن توانایی‌های آکروبات را در برنامهٔ خود به کار گیرد.

برای عنوان نمونه‌های دیگر می‌توان به نرم‌افزارهای پردازش متن، برگه‌های گسترده (صفحات گسترده) و نرم‌افزارهای پخش نوا و نما اشاره کرد.







نرم‌افزار متن‌باز
نرم‌افزار متن‌باز (به انگلیسی: Open Source Software) به نرم‌افزارهایی می‌گویند که افراد می‌توانند در کد منبع آن‌ها تغییر ایجاد کرده و یا اشکالات (باگ) احتمالی آن‌ها را رفع کنند. این یک شیوه توسعه نرم‌افزار است که می‌تواند هم برای نرم‌افزارهای آزاد و هم برای نرم‌افزارهای با مالکیت انحصاری و تجاری به کار رود.






مشخصات متن‌باز

مقدمه

متن‌باز فقط دسترسی به کد نرم‌افزار نیست..

نرم‌افزارهای متن‌باز باید دارای ۱۰ تعریف زیر باشند:

۱. توزیع مجدد آزاد

نرم‌افزار باید بدون نیاز به حق امتیاز یا هر گونه پرداختی برای فروش، امکان توزیع به صورت آزاد را داشته باشد.

۲. کد منبع

کد نرم‌افزار باید شامل نرم‌افزار باشد و اجازه توزیع کد نرم‌افزار داده بشود (برای مثال از یک صفحه وب قابل دانلود باشد).

۳. کار مشتق‌شده

اعمال تغییرات و کارهای بعدی روی نرم‌افزار امکان‌پذیر باشد و این نرم‌افزار جدید را بتوان تحت همان شرایط نرم‌افزار اولیه و اصلی تکثیر کرد.

۴. نگهداری تمامیت کد منبع نویسنده اصلی نرم‌افزار مجوز نرم‌افزار ممکن است اجازه تغییر در اصل متن برنامه را به کاربران ندهد و تنها اجازهٔ افزودن وصله‌های نرم‌افزاری و کامپایل مجدد برنامه را بدهد. در این شرایط توسعه دهندگان تنها می‌توانند توزیع‌هایی به کمک وصله‌های نرم‌افزاری خود ایجاد نمایند. مجوز نرم‌افزاری می‌باید صراحتاً ایجاد توزیع تازه با تغییر مجدد در کد اصلی را محدود نماید. نرم‌افزار توزیع شده تحت این مجوز می‌باید حتمن نام نسخه‌ای تازه را داشته باشد.

۵. بین افراد و گروه‌ها تبعیضی گذاشته نشود

اجازه‌نامه نباید بین افراد یا گروه‌ها تبعیضی بگذارد.

۶. هیچ تبعیضی در نوع استفاده از نرم‌افزار وجود نداشته باشد

هیچ گونه تبعیض و تمایزی بین هر فعالیتی که در راستای نرم‌افزار انجام می‌گیرد، وجود نداشته باشد. برای مثال نرم‌افزاری نباید بین استفادهٔ تجاری یا تحقیقاتی تبعیض قائل شود.

۷. توزیع اجازه‌نامه

مجوز باید به هرکسی که یک کپی از نرم‌افزار را دریافت می‌کند نیز اختصاص یابد، بدون این‌که آن‌ها نیاز به توافق و هماهنگی با اجازه‌نامهٔ دیگری داشته باشند.

۸. اجازه‌نامه نباید مخصوص یک محصول باشد

حقوق داده شده در مجوز یک نرم‌افزار نباید وابسته به این باشد که بخشی از بسته بزرگتری است. در صورتی که نرم‌افزار از محصول دریافت شده نیز جدا شود، باید همان حقوق را در استفاده، توزیع و ویرایش، به دریافت کننده نرم‌افزار را اعطا کند. تمام کسانی که آن نرم‌افزار را، که قبلاً به عنوان بخشی از محصول بزرگتری بوده است، دریافت و یا توزیع مجدد می‌کنند باید تمامی حقوق را مانند محصول اصلی داشته باشند.

۹. اجازه‌نامه نباید نرم‌افزارهای دیگر را محدود کند

شرایط تعریف شده در مجوز نباید توزیع نرم‌افزار را درکنار نرم‌افزارها با مجوزهای دیگر محدود کند. برای نمونه نمی‌تواند تعیین کند که تمامی نرم‌افزارهای ارائه شده در لوح فشرده ارائه شده باید متن باز باشند.

۱۰. اجازه‌نامه باید از نظر تکنولوژی بی‌طرف باشد

اجازه‌نامه نباید مختص یک تکنولوژی خاص باشد.







در ایران

مرکز ملی توسعه و بکارگیری نرم‌افزارهای بومی و آزاد /متن باز ایران (متنام) روز چهارشنبه مورخ ۲۲ خرداد ۱۳۹۲ در ساختمان دوم سازمان فناوری اطلاعات ایران افتتاح شد.








مای‌اس‌کیوال

مای‌اس‌کیوال (به انگلیسی: MySQL) یک سامانه مدیریت پایگاه داده‌ها متن‌باز است، که توسط شرکت اوراکل توسعه، توزیع، و پشتیبانی می‌شود.

سرور مای‌اس‌کیوال به چندین کاربر اجازه استفاده همزمان از داده‌ها را می‌دهد.






مزیت‌ها

مای‌اس‌کیوال از مزیت‌های زیر بهره‌مند است:

مقیاس‌پذیری و قابلیت انعطاف
عملکرد بالا
در دسترس‌بودن بالا
پشتیبانی از تراکنش‌ها
محافظت از داده
آسان بودن مدیریت
آزاد بودن برنامه
پشتیبانی شبانه‌روزی







تاریخچه

توسعه مای‌اس‌کیوال در سال ۱۹۹۴ توسط مایکل وایدنیوس و دیوید آکسمارک آغاز شد. اولین نسخه داخلی در ۲۳ می ۱۹۹۵ عرضه شد. در سال ۲۰۰۸ سان میکروسیستمز مای‌اس‌کیوال ای‌بی را خریداری کرد. شرکت اوراکل سان میکروسیستمز را در ۲۷ ژانویه ۲۰۱۰ خریداری کرد.
قابلیت‌ها
انواع داده







انواع داده‌های پشتیبانی شده در مای‌اس‌کیوال شامل موارد زیر است:

عددی
کاراکتری
دودویی



شمارشی (Enum)
زمان و تاریخ
نوع‌های داده‌های فضایی (به انگلیسی: Spatial)







موتورهای ذخیره‌سازی

مای‌اس‌کیوال از چندین موتور ذخیره‌سازی پشتیبانی می‌کند که به عنوان نوع‌های جدول مختلف عمل می‌کنند. برخی انواع موتورهای ذخیره‌سازی در برابر تراکنش‌ها امن، و برخی دیگر در برابر تراکنش‌ها ناامن هستند.

لیست موتورهای ذخیره‌سازی مای‌اس‌کیوال شامل موارد زیر است:

اینودی‌بی (به انگلیسی: InnoDB): امن در برابر تراکنش‌ها است. از قواعد جامعیت کلید خارجی پشتیبانی می‌کند. از مای‌اس‌کیوال ۵.۵.۵ موتور ذخیره‌سازی پیش‌فرض مای‌اس‌کیوال است.
مای‌آی‌سم (به انگلیسی: MyISAM): قبل از نسخه ۵.۵.۵ موتور ذخیره‌سازی پیش‌فرض مای‌اس‌کیوال بود.
حافظه (به انگلیسی: Memory): تمام داده را به منظور دسترسی سریع در حافظه نگهداری می‌کند.
ادغام (به انگلیسی: Merge): قابلیت گروه‌بندی کردن چندین جدول مای‌آی‌سم مشابه و ارجاع به آن‌ها به عنوان یک جدول را می‌دهد.
آرشیو (به انگلیسی: Archive): برای نگهداری داده‌های آرشیوی که به ندرت به آن‌ها ارجاع می‌شود.
متحد (به انگلیسی: Federated): برای پیوند زدن چندین سرور مای‌اس‌کیوال مجزا برای ایجاد یک پایگاه‌داده منطقی از چندین سرور فیزیکی.
سی‌اس‌وی (به انگلیسی: CSV): داده را در فایل‌های متنی با قالب مقادیر جداشده با کاما ذخیره‌سازی می‌کند.
سیاه‌چاله (به انگلیسی: Blackhole): ورودی داده را قبول می‌کند، ولی آن را ذخیره نمی‌کند.







برنامه‌های ذخیره‌شده

در مای‌اس‌کیوال هر برنامه ذخیره‌شده شامل یک بدنه است که از عبارات اس‌کیوال تشکیل شده است. برنامه‌های ذخیره‌شده می‌توانند مقادیر خروجی داشته باشند (ایجاد شده توسط CREATE PROCEDURE) یا نداشته باشند (ایجاد شده توسط CREATE FUNCTION). اگر یک برنامه خروجی داشته باشد، از آن می‌توان در پرس‌وجوی SELECT استفاده کرد.







مایا

مایا نام نرم‌افزاری برای طراحی سه بعدی است. این نرم‌افزار نخست توسط شرکت آلیاس. ویو فرانت عرضه شده‌است که در سال ۲۰۰۵ شرکت اتودسک (شرکت سازنده نرم‌افزارهای سه بعدی و انیمیشن سازی از جمله تری‌دی‌اس‌مکس و اتوکد) آن را خریداری کرد و نسخه‌های جدید مایا با نام اتودسک مایا (Autodesk MAYA) به بازار عرضه شدند.

مایا یکی از پیشرفته‌ترین نرم‌افزار انیمیشن و مدل سازی سه بعدی است که به طور گسترده در استودیوهای فیلم سازی، انیمیشن و همینطور صنعت بازی‌های رایانه‌ای استفاده می‌شود. البته نقطه قوت مایا در ابزارهای مدل سازی آن است و در شرکتهای بزرگ نیز بیشتر از این خصیصه اش استفاده می‌کنند. تکنولوژی NURBS بکار رفته در این استودیو انیمیشن سازی، باعث کمک به طراحی بهینه اشیاء طبیعی از جمله چمن، گیاهان، مو و... می‌شود. توانایی بالا در Rendering که با استفاده از موتور قدرتمند mentalray و وجود Materialهای متنوع در این نرم‌افزار از جمله موارد کلیدی آن است. از جمله ویژگی‌های این نرم‌افزار، انعطاف پذیری و قابلیت‌های شخصی سازی (customization) آن است که به کاربران حرفه‌ای اجازه می‌دهد به سادگی محیط آن را به دلخواه خود تغییر دهند. مایا یک نرم‌افزار جامع است که به بخش های مختلفی تقسیم شده که هر بخش ویرایش و ایجاد یکی از مراحل ساخت انیمیشن رابر عهده دارد و نیاز کاربر را به نرم‌افزار های جانبی به حد اقل میرساند . به علاوه، یکی دیگر از قابلیت‌های منحصربه‌فرد آن امکان توسعه این نرم‌افزار برای استفاده کنندگان آن است. کاربران می‌توانند از طریق زبان‌های برنامه نویسی سی پلاس پلاس، MEL یا (maya embedded language) و همینطور پایتون آن را توسعه دهند و ابزارها و امکاناتی که پیشتر در نرم‌افزار وجود نداشته‌اند را به آن اضافه کنند. به همین دلیل بسیار مورد توجه استودیوهای بزرگ سازنده فیلم و انیمیشن قرار گرفته‌است.

تا سال ۲۰۰۹ مایا در دو گونهٔ maya complete و maya unlimited عرضه می‌شد که گونهٔ دوم امکانت گسترده تر همینطور قیمت بالا تری داشت، اما از نسخه ۲۰۱۰ به بعد فقط در یک گونه و با تمام امکانات عرضه می‌شود. آخرین نسخه مایا maya 2014 است. البته لازم به ذکر است که در سالهای اخیر، این نرم‌افزار در قالب ۳۲ بیت و ۶۴ بیت عرضه می‌شود.

در سال ۲۰۰۳ نرم‌افزار مایا برنده جایزه Academy Award برای "موفقیت‌های علمی و فنی" شد.

هسته اصلی مایا در زبان سی‌پلاس‌پلاس نوشته شده‌است.

نرم‌افزار مایا بر روی سیستم‌عامل‌های ویندوز، لینوکس و مکینتاش قابل استفاده‌است.








مامبو

مامبو (Mambo Open Source یا MOS) یک سیستم مدیریت محتوا (CMS) به صورت متن باز و نرم‌افزار آزاد می‌باشد که امکانات زیادی برای ایجاد و مدیریت یک وب‌گاه چندمنظوره با یک رابط ساده فراهم می‌کند.

مامبو به زبان PHP نوشته شده و به صورت پیش فرض از پایگاه داده MySQL استفاده می‌کند. این سیستم مدیریت محتوا مانند سایر پروژه‌های PHP/MySQL به اغلب محیط‌های کاری کامپیوتری (سیستم‌عامل‌ها و معماری‌های مختلف) قابل انتقال (portable) است.

مامبو تحت مجوز گنو (GPL) منتشر می‌گردد و حقوق آن متعلق به بنیاد مامبو (Mambo Foundation) می‌باشد.






ویژگی‌های مامبو

ویژگی‌ها و امکانات مامبو مشابه با دیگر سیستم‌های مدیریت محتوا بوده و برخی از آنها در فهرست زیر آمده‌است:

اطلاعات کاملاً در دیتا بیس قرار دارد
رابط کاربری و مدیریتی ساده
پشتیبانی از XML و RSS
امکان تهیه صفحات نهانی (cache) برای بالا بردن سرعت مرور وب‌گاه
ایجاد فروم، نظر سنجی و وبلاگ
چندزبانه بودن و قابلیت محلی سازی







آخرین نسخه

در حال حاضر (دسامبر ۲۰۰8) آخرین نسخه منتشر شده مامبو ۴٫۶.۵ می‌باشد. وبژگیهای این نسخه عبارت‌اند از:

قسمت مدیریت کاملا دو زبانه‌است . با تغییر زبان قالب هم متناسب با دایرکشن مربوطه تغییر می‌کند
تاریخ‌های بخش کاربری و مدیریت با تغییر زبان، تغییر می‌کنند یعنی با تغییر زبان به انگلیسی تاریخ‌ها میلادی و با تغییر به زبان فارسی تاریخ‌ها شمسی می‌شوند . این قابلیت برای سایتهای چند زبانه بسیار کاربرد دارد. ( این قابلیت در مدیریت محتواهای مشابه وجود ندارد )
حل چند مشکل امنیتی که با روشن بودن Register Global ممکن بود سایت‌ها را دچار آسیب کند
حل مشکل Vote & SEF
حل مشکل حالت نمایش ساده و پیشرفته قسمت مدیریت
اضافه شدن قسمت‌های بیشتر برای ترجمه از قسمت مدیریت
ارتقا پاپ آپ تاریخ در قسمت مدیریت
حل مشکل Tooltip‌ها و افزایش عرض صفحه
...
10:02 pm

آغاز کیمیا (۳۰۰–۷۰۰ پ. م.)

در گذشته مردم بسیار مشتاق بودند که بتوانند فلزهایی ارزان را به فلزی گرانبها همچون طلا تبدیل کنند. به اعتقاد آنان ماده‌ای که می‌توانست چنین کاری انجام دهد، سنگ فلاسفه بود. همین موضوع سبب شد که علمی به نام کیمیا* پدید آید.





کیمیا تنها به دنبال تبدیل فلزهای ارزان به فلزهای گرانبها نبود. آن زمان این امید وجود داشت که کیمیا بتواند کمکی کند تا دارویی ساخته‌شود که منجر به بهبودی مردم شود. مردم امیدوار بودند که کیمیاگران بتوانند ماده‌ای به نام آب حیات یا اکسیر زندگی به وجود بیاورند تا به کمک آن مرگ انسان‌ها را به تأخیر بیندازند. اما هرگز سنگ جادو و آب حیات به وجود نیامد.




از کیمیاگری به شیمی (۷۰۰–۱۵۰۰)

در جهان عرب، دانشمندان مسلمان شروع به ترجمهٔ آثار علمی یونان باستان کردند و شیوه‌های علمی آن‌ها را آزمایش کردند. توسعهٔ شیمی مدرن بسیار آهسته و دشوار بود اما یک شیوه علمی برای شیمی در میان مسلمانان در حال پیدایش بود. در قرن هشتم میلادی، جابر بن حیان که او را پدر علم شیمی نیز می‌نامند، و از شاگردان امام ششم شیعیان بوده است یک رویکرد منظم و همراه با آزمایش را معرفی کرد. تحقیقات او بر خلاف کیمیاگران یونانی و مصری که بیشتر تنها در ذهن خود به تفکر می‌پرداختند، در آزمایشگاه صورت می‌گرفت. او وسیله‌ای به نام عنبیق اختراع کرد و با آن مواد شیمیایی را بررسی می‌کرد. عنبیق وسیله‌ای ساده برای تقطیر مواد بود. این ظرف برای گرم کردن مخلوط‌ها و جمع‌آوری و هدایت بخارهای حاصل به کار می‌رفت. از کارهای جابر بن حیان تفاوت قائل شدن میان اسید و باز، و ساخت صدها دارو بود.

سایر شیمی‌دانان مؤثر مسلمان از قبیل ابن سینا، ابویوسف کندی، ابوریحان بیرونی و امام جعفر صادق برخی نظریه‌های کیمیا از جمله داستان سنگ فلاسفه را رد کردند. خواجه نصیر طوسی نیز به گونه‌ای پایستگی جرم را ارائه کرد. او اشاره کرد که یک ماده تنها می‌تواند تغییر کند اما نمی‌تواند ناپدید شود. محمد زکریای رازی نیز نظریهٔ عناصر چهارگانهٔ ارسطو را برای اولین بار رد کرد. او با به‌کارگیری آزمایشگاه مدرن و طراحی و توصیف بیش از بیست ابزار آزمایشگاهی که برخی از آن‌ها هم‌اکنون نیز کاربرد دارند، یک بنیان مستحکم برای شیمی مدرن بنا کرد.





آغاز شیمی نوین (۱۵۰۰–۱۸۰۰)

مشاهده کردن، اندیشیدن و نتیجه‌گیری کردن ابزارهای یونانیان باستان برای مطالعهٔ علوم طبیعی بود. کیمیاگران نیز تا پیش از آغاز دوران شیمی مدرن تنها از این سه ابزاره استفاده می‌کردند. در سال ۱۶۰۵، فرانسیس بیکن کتاب مهارت و پیشرفت فراگیری را منتشر کرد که حاوی توضیحاتی بود که بعدها به روش علمی معروف شد. در سال ۱۶۱۵ ژان بگن برای اولین بار از معادله شیمیایی استفاده کرد. رابرت بویل، دانشمند بریتانیایی در سال ۱۶۶۱ در کتاب شیمی‌دان شکاک، شیمی را علمی تجربی خواند. او از محققان خواست تا علاوه بر سه ابزار اصلی یونانیان پژوهش‌های علمی نیز انجام دهند. بویل عقیدهٔ ارسطو را که جهان از چهار عنصر آب، هوا، خاک و آتش تشکیل شده‌است را رد کرد و به جای آن سه عنصر نمک، گوگرد و جیوه را عناصر سازندهٔ جهان دانست. در عوض او مفهومی جدید ارائه کرد که ذرات اولیه با ایجاد پیوند با یکدیگر ترکیب‌های جدید می‌سازند. این تعبیر ساده‌ترین و در عین حال معقول‌ترین تعبیری بود که ارائه شد. پس از آن برای توجیه پدیده‌های طبیعی به جای نظریهٔ ارسطو از نظریهٔ بویل استفاده‌شد. در سال ۱۶۶۹ هنینگ براند توانست فسفر را از ادرار به دست‌آورد و فسفر اولین عنصری بود که با شیوهٔ شیمیایی کشف شد. هنری کاوندیش برای اولین بار در سال ۱۷۶۶ توانست گاز هیدروژن (H2) را از سار گازها تمیز دهد. لاووازیه در سال ۱۷۹۳ نام این گاز را هیدروژن نهاد.

آنتوان لاووازیه در سال ۱۷۸۹ قانون پایستگی جرم را مطرح کرد که به قانون لاووازیه نیز مشهور شد. در این هنگام قوانین شیمی کمی قوی‌تر شد به گونه‌ای که پیش‌بینی‌های درست‌تری صورت می‌گرفت.

جوزف بلک در سال ۱۷۵۴ توانست کربن دی‌اکسید که او به آن هوای ثابت می‌گفت را جداسازی کند. کارل ویلهلم شیله و جوزف پریستلی هر یک در سال‌های ۱۷۷۱ و ۱۷۷۴ به طور مستقل توانستند اکسیژن را با گرم کردن جیوه (II) اکسید و نیترات‌ها جداسازی کنند. جوزف پروس نیز با کشف «قانون نسبت‌های معین» باعث پیشرفتی بزرگ در شیمی شد. بر اساس این قانون مواد شیمیایی با نسبت‌های معین با یکدیگر واکنش می‌دهند. در سال ۱۸۰۰ آلساندرو ولتا با ساخت اولین باتری شیمیایی باعث سرآغاز دانش الکتروشیمی شد. در سال ۱۸۰۱، جان دالتون نظریهٔ اتمی خود را در هفت بند منتشر کرد. او در نظریهٔ خود اتم را تجزیه‌ناپذیر خواند. در آن زمان نظریهٔ دالتون بسیار تاثیرگذار بود به طوری که در قرن نوزدهم، شیمی‌دانان به دو گروه تقسیم می‌شدند. گروه اول کسانی بودند که نظریهٔ اتمی جان دالتون را دنبال می‌کردند و گروه دوم کسانی همانند ارنست ماخ بودند که به این نظریه اعتقاد نداشتند.

در سالنامهٔ علوم (به فرانسوی: L'année de la science) مربوط به سال ۱۹۹۰ راجر کراتینی بیان می‌کند که انگلیسی‌ها بدون تردید اظهار دارند که جوزف پریستلی پدر شیمی جدید است و فرانسوی‌ها نیز آنتوان لاووازیه را پدر شیمی جدید می‌دانند.

اگرچه شیمی در دورهٔ تمدن بابل و مصر باستان آغاز شد و ایرانیان و عرب‌ها در دورهٔ تمدن اسلامی فعالیت‌های زیاد انجام دادند، با این حال شیمی مدرن پس از فعالیت‌های لاووازیه شکوفا شد. اصلی‌ترین دلیل آن اکتشافات او دربارهٔ پایستگی جرم، نظریهٔ ماهیت آتش و واکنش سوختن در سال ۱۷۸۳ بود. پیش از آن فرض می‌شد که ماهیت آتش ماده‌ای‌است که از مادهٔ سوختنی آزاد می‌شود.

پس از آنکه واکنش سوختن به طور علمی بررسی و حل و فصل شد، فریدریش وهلر، که در سال ۱۸۲۸ موفق به ساخت ترکیب اوره شده‌بود، بحث دیگری را دربارهٔ ارتباط شیمی و حیات و تمایز مواد آلی و مواد معدنی آغاز کرد. پیش از آن در دانش شیمی هرگز به ترکیب مواد آلی و مواد معدنی پرداخته‌نشده‌بود. همین امر سرآغاز یک رشته جدید در شیمی شد به طوری که در اواخر قرن نوزدهم میلادی دانشمندان می‌توانستند صدها ترکیب آلی به وجود بیاورند. مهم‌ترین آن‌ها جوهرهای مصنوعی بنفش، سرخابی و سایر رنگ‌ها و نیز آسپیرین بود. کشف شیوهٔ مصنوعی تهیهٔ اوره کمک بسیار بزرگی به کشف ترکیبات همپار کرد. چراکه آمونیوم سیانید و اوره دارای فرمول تجربی یکسان هستند.

مایکل فارادی در سال ۱۸۲۵ توانست بنزن را از گاز درخشان آزاد شده از پیرولیز روغن وال به دست بیاورد و آن را بی‌کابورت هیدروژن نامید. بنزن اولین و ساده‌ترین ترکیب آروماتیک کشف شده‌است. ساختار بنزن توسط فریدریش آگوست ککوله در سال ۱۸۶۵ میلادی شناسایی شد.



شیمی نوین

پیش از قرن بیستم، شیمی به عنوان دانشی برای شناخت طبیعت مواد و دگرگونی آن‌ها شناخته‌می‌شد. تفاوت عمدهٔ شیمی با فیزیک این بود که در شیمی از ریاضیات استفاده نمی‌شد و بیشتر علمی تجربی بود. برای نمونه، اوت کنت در سال ۱۸۳۰ نوشت:

هر تلاشی برای به‌کارگیری شیوه‌های ریاضیاتی در مطالعهٔ شیمی، کاملاً غیرمنطقی و بر خلاف روح شیمی‌است. اگر روزی آنالیزهای ریاضی یک بخش برجستهٔ شیمی را به عهده بگیرد، باعث انحطاط آن می‌شود.

به هر حال در نیمهٔ دوم قرن نوزدهم شرایط تغییر کرد و فریدریش آگوست ککوله در سال ۱۸۶۷ نوشت:

من انتظار دارم که روزی یک توضیح ریاضیاتی-مکانیکی برای آنچه که امروزه به آن اتم می‌گوییم، خواهیم‌یافت و به کمک آن خواص اتم‌ها را بررسی خواهیم‌کرد.

پس از اکتشافات ارنست رادرفورد و نیلز بور دربارهٔ ساختار اتم و اکتشافات ماری و پیر کوری دربارهٔ پرتوزایی، دانشمندان مجبور بودند دیدگاه خود را نسبت به طبیعت مواد تغییر دهند. بنابراین شیمی به عنوان دانش مواد و مطالعهٔ ترکیب، ساختار و خاصیت‌های مواد و تغییراتی که دستخوش آن‌ها می‌شود، تعریف شد. در تعریف شیمی، ماده همان اتم‌ها و مولکول‌ها هستند و در شیمی واکنش‌های هسته‌ای و شکافت هسته‌ای نادیده گرفته‌می‌شوند. ولی این به آن معنا نیست که شیمی با دانش هسته‌ای ارتباطی ندارد چرا که شاخه‌هایی همچون شیمی هسته‌ای و شیمی کوانتومی نیز وجود دارد اما آنچه امروزه به عنوان کاربرد شیمی از آن یاد می‌شود بررسی مفاهیمی دربارهٔ مواد چه در مقیاس بزرگ و چه در مقیاس مولکولی و اتمی‌است. مطالعه‌های شیمی به بررسی کل یک مولکول تا تأثیر یک پروتون تنها روی یک اتم می‌پردازد.



جدول تناوبی

جان نیولندز، شیمی‌دان انگلیسی در سال ۱۸۶۵ دریافت که با گذر از هر هشت عنصر، خواص فیزیکی تکرار می‌شوند.[۷۱] او این خواص مشابه را نیز یادداشت کرد.[۷۲] دیمیتری مندلیف، شیمی‌دان روسیه‌ای اولین کسی بود که یک جدول تناوبی مشابه جدول‌های تناوبی امروزی را به وجود آورد. او عناصر را برحسب جرم اتمی کنار یکدیگر قرار داد و همانند بازی سولیتیر، روی کارت‌هایی نام و خواص عناصر را نوشت و با کنار یکدیگر قرار دادن آن‌ها به شباهت خواص آن‌ها پی برد. او عناصری که به یکدیگر شبیه بودند را در جدولی زیر یکدیگر قرار داد و جدولش را در یک مجلهٔ ناشناخته روسی منتشر کرد و کمی بعد در نشریهٔ آلمانی «مجلهٔ شیمی» (به آلمانی: Zeitschrift für Chemie) منتشر شد.

مندلیف به دلیل تکرار تناوبی خواص متوجه شد که بعضی عناصر هنوز کشف نشده‌اند. او مجبور شد جای این عناصر را در جدولش خالی بگذارد. او وجود سه عنصر ژرمانیم، گالیوم و اسکاندیم را حدس زد و نام آن‌ها را به ترتیب اکاسیلیسیوم، اکاآلومینیوم و اکابور نهاد. وی همچنین توانست برخی خواص همچون جرم و رنگ آن‌ها را حدس بزند که پس از کشف این عناصر پیش‌بینی‌های او با واقعیت مطابقت می‌کردند.



جایزهٔ نوبل شیمی

آلفرد نوبل، کارآفرین سوئدی و مخترع دینامیت در آخرین وصیت‌نامه‌اش که در ۲۷ نوامبر ۱۸۹۵ آن را تنظیم کرد، خواست که ثروتش صرف ایجاد مراسمی برای اهدای جوایز به «کسی که بیشترین سود را به نوع بشر» در زمینهٔ فیزیک، شیمی، صلح، فیزیولوژی یا داروسازی و ادبیات می‌رساند، شود. نوبل ۹۴٪ ثروتش را که معادل ۳۱ میلیون کرون سوئد* بود وقف ایجاد این پنج جایزه کرد.

در ۱۰ دسامبر ۱۹۰۱ اولین جوایز نوبل اهدا گردید. اولین جایزهٔ نوبل شیمی را یاکوبوس هنریکوس وانت‌هوف به علت کشف قوانین دینامیک شیمیایی و فشار اسمزی در محلول‌ها دریافت کرد.



مدل‌های اتمی

اتم‌ها تا سال ۱۸۹۷ کوچک‌ترین جزء ماده و تجزیه‌ناپذیر تلقی می‌شدند. جوزف جان تامسون در سال ۱۸۹۷ طی تحقیقات روی پرتوهای کاتدی، الکترون را کشف کرد. او با قرار دادن یک میدان الکتریکی در اطراف پرتوهای کاتدی متوجه انحراف پرتوها شد و به وجود الکترون در اتم پی برد و در نتیجه تجزیه‌ناپذیر بودن اتم را رد کرد. پس از آن با استناد بر آزمایش خود، یک مدل اتمی ارائه کرد که به مدل کیک کشمشی یا مدل هندوانه‌ای معروف شد. بر اساس این مدل بار مثبت به صورت فضای ابرگونه‌ای سراسر اتم پخش شده‌است و الکترون‌ها در این فضا پراکنده شده‌اند. او مدل خود را به کیک کشمشی تشبیه کرد به طوری که الکترون‌ها همان کشمش‌ها و بار مثبت کیک است.

مدل تامسون در سال ۱۹۰۹ توسط ارنست رادرفورد، یکی از شاگردان قدیمی تامسون رد شد. رادرفورد و هانس گیگر آزمایش ورقهٔ طلا را ابداع کردند. آن‌ها در این آزمایش یک ورقه نازک طلا را در معرض پرتوهای آلفا قرار دادند. آن‌ها انتظار داشتند که بر اساس مدل تامسون پرتوهای آلفا با انحراف بسیار کمی از ورقهٔ طلا عبور کنند اما بسیاری از پرتوها با زاویهٔ بیشتر از ۹۰° بازگشتند.

رادرفورد نتیجه گرفت که اتم دارای هسته‌ای متمرکز است و مدل اتمی خود را ارئه کرد. او کشف کرد که بیشتر جرم اتم مربوط به بار مثبت است و بار مثبت در یک فضای کوچک به نام هسته در مرکز اتم فشرده شده‌است. الکترون‌ها نیز در فضایی اطراف هسته قرار دارند.

مدل اتمی رادرفورد در دو مورد پایداری اتم و طیف ناپیوستهٔ تابشی اتم پاسخی نداشت. بر اساس مدل رادرفورد اتم نمی‌توانست پایدار باشد؛ زیرا اگر فرض شود الکترون‌ها ثابت هستند، الکترون به دلیل بار منفی جذب هسته می‌شود و اگر فرض شود که الکترون‌ها مانند سیارات منظومهٔ شمسی در حال حرکت به دور هسته هستند و نیروی مرکزگرا همان نیروی الکتریکی‌است، الکترون‌ها باید موج الکترومغناطیسی تابش کنند که در این صورت انرژی الکترون‌ها کاهش یافته و به تدریج روی اتم سقوط می‌کنند. نیلز بور در سال ۱۹۱۳ با توجه به نظریه‌های کوانتومی پلانک و اینشتین، با تجدیدنظر بنیادی در فیزیک کلاسیک، مدل اتمی خود را بیان کرد. او در نظریهٔ خود اعلام کرد که الکترون‌ها در هر مداری نمی‌توانند پایدار بمانند و فقط در مدارهای مجازی به نام «مدارهای مانا» می‌توانند پایدار بمانند و به دور هسته بچرخند. او نیروی مرکزگرا را نیز همان نیروی الکتریکی فرض کرد. تا زمانی که الکترون روی مدار مانا حرکت کند، موج الکترومغناطیسی تابش نمی‌کند و انرژی آن مانا است. در مدل بور شعاع مدار الکترون‌ها نمی‌تواند هر مقداری باشد و شعاع‌ها کوانتیده هستند و الکترون‌ها تنها هنگام جهش از یک مدار پایه به یک مدار با انرژی بیشتر تابش می‌کنند و مقدار انرژی آن‌ها نیز کوانتیده‌است.




شیمی کوانتومی

کشف معادله شرودینگر توسط اروین شرودینگر و مقالهٔ والتر هایتلر و فریتز لندن که در سال ۱۹۲۷ منتشر شد، به عنوان سرآغاز شیمی کوانتومی شناخته‌می‌شود. به این ترتیب شیمی‌دانان توانستند پیوند اتمی را توجیه کنند. در دههٔ ۱۹۴۰ بسیاری از فیزیک‌دانان مانند روبرت اوپنهایمر و ادوارد تلر از مقیاس مولکولی و اتمی فیزیک به فیزیک هسته‌ای روی آوردند. در سال ۱۹۲۶ میلادی، شرودینگر بر مبنای رفتار دوگانهٔ ذره‌ای و موجی الکترون و با تأکید بر رفتار موجی آن، محدود کردن الکترون به یک مدار دایره شکل را درست ندانست و از حضور الکترون در یک محیط سه بعدی سخن گفت. او یک مدل کوانتومی برای اتم ارائه کرد. کلمنز روتان نیز در سال ۱۹۵۱ مقاله‌ای دربارهٔ معادلات روتان منتشر کرد.

شیمی کوانتوم قوانین مکانیک کوانتوم را در مسائل مربوط به شیمی مورد استفاده قرار می‌دهد. به کمک شیمی کوانتومی می‌توان بسیاری از خاصیت‌های مولکول‌ها مانند طول و زاویهٔ پیوندی، قطبیت پیوند، قطبیت مولکول و طیف‌های مولکولی را مطالعه‌کرد. لینوس پاولینگ نیز برروی طبیعت پیوندهای شیمیایی و ساختار کمپلکس‌ها تحقیقاتی انجام داد که باعث شد در سال ۱۹۵۴ جایزهٔ نوبل شیمی را دریافت کند.همچنین وی یکی از بزرگ‌ترین شیمی‌دانان قرن بیستم شناخته می‌شود.
 

ساعت : 10:02 pm | نویسنده : admin | مطلب قبلی | مطلب بعدی
آزمایشگاه شیمی | next page | next page