چگونگی ساخت ستون (مقاطع مرکب)

ستون‌ها ممکن است بر حسب نیاز با ترکیب و اتصالات متنوع از انواع پروفیلهای مختلف ساخته شوند. اما رایجترین اتصال برای ساخت ستون‌ها سه نوع است





اتصال دو پروفیل به یکدیگر به طریقه دوبله کردن: ابتدا دو تیرآهن را در کنار یکدیگر و بر روی سطح صاف به هم چسبیده گردند؛ سپس دو سر و وسط ستون را جوش داده و ستون برگردانده شده و مانند قبل جوشکاری صورت می‌گیرد؛ آن گاه ستون معکوس و در قسمت وسط، جوشکاری می‌شود. همین کار را در سوی دیگر ستون انجام می‌دهند و به ترتیب جوشکاری ادامه می‌یابد تا جوش مورد نیاز ستون تامین گردد. این شیوه جوشکاری برای جلوگیری از پیچش ستون در اثر حرارت زیاد جوشکازی ممتد می‌باشد. در صورتیکه در سرتاسر ستون به جوش نیازی نباشد، دست کم جوشها باید به این ترتیب اجرا گردد:

الف) حداکثر فاصله بین طولهای جوش در طول ستون به صورت غیر ممتد از ۶۰ سانتیمتر تجاوز نکند.
ب) طول جوش ابتدایی و انتهایی ستون باید برابر بزرگترین عرض مقطع باشد و به طور یکسره انجام گیرد.
ج) طول موثر هر قطعه از جوش منقطع نباید از ۴ برابر بعد جوش یا ۴۰ میلیمتر کمتر باشد.
د) تماس میان بدنه دو پروفیل نباید از یک شکاف ۵/۱ میلیمتری بیشتر، اما از ۶ میلیمتر کمتر باسد؛ ضمنا بررسیهای فنی نشان دهد مه مساحت کافی برای تماس وجود ندارد؛ در آن صورت، این بادخور باید با مصالح پر کننده مناسب شامل تیغه‌های فولادی با ضخامت ثابت پر شود.

۲- اتصال دو پروفیل با یک ورق سراسری روی بالها: در مقاطع مرکبی که ورق اتصال بر روی دو نیمرخ متصل می‌شود تا مقاطع مرکب تشکیل بدهد؛ فاصله جوشهای مقطع (غیر ممتد) که ورق را به نیمرخها متصل می‌کند، نباید از ۳۰ سانتیمتر بیشتر شود. اندازه حداکثر فاصله فوق‌الذکر در مورد فولاد معمولی به صورت t22 که t در آن ضخامت ورق است در می‌آید.
۳- اتصال دو پروفیل با بستهای فلزی (تسمه): متداولترین نوع ستون در ایران ستون‌های مرکبی است که دو تیرآهن به فاصله معین از یکدیگر قرار می‌گیرد و قیدهای افقی یا چپ و راست این دو نیمرخ را به هم متصل می‌کند؛ البته بستهای چپ و راست که شکلهای مثلثی را به وجود می‌آورند، دارای مقاومت بهتری نسبت به قیدهای موازی می‌باشند. در مورد اینگونه ستون‌ها، بویژه ستون با قید موازی مسائل زیر را بایستی رعایت کرد:

الف) ابعاد بست (وصله) افقی ستون کمتر از این مقادیر نباشد:
L: طول وصله حداقل به فاصله مرکز تا مرکز دو نیمرخ باشد.
B: عرض وصله از ۴۲ درصد طول آن کمتر نباشد.
T: ضخامت وصله از ۳۵/۱ طول آن کمتر نباشد.
ب) در اطراف کلیه وصله‌ها و در سطح تماس با بال نیمرخها عمل جوشکاری انجام گیرد (مجموع طول خط جوش در هر طرف صفحه نباید از طول صفحه کمتر شود).
ج) فاصله قیدها و ابعاد آن بر اساس محاسبات فنی تعیین می‌شود.
د) در قسمت انتهایی ستون، باید حتما از ورق با طول حداقل برابر عرض ستون استفاده کرد تا علاوه بر تقویت پایه، محل مناسبی برای اتصال بادبندها به ستون به وجود آید.
ه) در محل اتصال تیر یا پل به ستون لازم است قبلا ورق تقویتی به ابعاد کافی روی بالهای ستون جوش شده باشد.

روش نصب نبشی بر روی کف ستون‌ها (بیس پلیت) برای استقرار ستون هنگام محاسبه ابعاد کف ستون‌ها باید حداقل فاصله میله مهاری از لبه کف ستون و محل جاگذاری نبشی با ضخامت جوش لازم برای نگه داشتن ستون، همچنین ضخامت پلیت انتهایی ستون و ابعاد ستون را با دقت بررسی کرد؛ سپس با توجه به موارد یاد شده، به نصب نبشی و استقرار ستون به این صورت اقدام نمود. بر روی بیس پلیت‌ها محل کف ستون و محل آکس را کنترل می‌کنیم؛ سپس نبشیهای اتصال را به صورت عمود برهم بر روی بیس پلیت جوش داده، آنگاه ستون را مستقر و اقدام به نصب دگر نبشیهای لازم کرده و آنها را به بیس پلیت جوش می‌دهیم. از مزایای عمود برهم بودن دو نبشی روی بیس پلیت علاوه بر سرعت عمل و استقرار بهتر به علت تماس مستقیم ستون به بال نبشی، اتصال جوشکاری به گونه‌ای درست تر و اصولی تر صورت می‌گیرد. روشن است که قبل از جوشکاری باید ستون‌ها را هم محور و قائم نموده و عمود بودن در دو جهت کنترل گردد. پس از نصب ستون‌ها با توجه به ارتفاع ستون و آزاد بودن سر ستون ممکن است تا زمان نصب پلها، ستون‌ها در اثر شدت باد و وزن خود حرکتهایی داشته باشند که احتمالا تاثیر نا مطلوب و ایجاد ضعف در جوشکاری و اتصالات کف ستون‌ها خواهد داشت. به این سبب، باید پس از نصب، فورا به مهاربندی موقت ستون‌ها به وسیله میلگرد یا نبشی بصورت ضربدری اقدام کرد.




طویل کردن ستون‌ها

سازهای فلزی را اغلب در چندین طبقه احداث می‌کنند، طول پروفیلها برای ساخت ستون محدود است. با در نظر گرفتن بار وارده و دهانه بین ستون‌ها و نحوه قرار گرفتن ستون‌های کناری، مقاطع مختلفی برای ساخت ستون‌ها به دست می اید. ممکن است در هر طبقه، ابعاد مقطع ستون با طبقه دیگر تفاوت داشته باشد؛ بنابراین، باید اتصال مقاطع با ابعاد مختلف برای طویل کردن با دقت زیادی انجام شود. محل مناسب برای وصله ستون‌ها به هنگام طویل کردن آنها حداقل در ازتفاع ۴۵ تا ۶۰ سانتی‌متر بالاتر از کف هر طبقه یا ۶/۱ ارتفاع طبقه می‌باشد. این ارتفاع اندازه حداقلی است که از نظر دسترسی به محل اجرای جوش و نصب اتصالات مورد نیاز برای ادامه ستون یا اتصال بادبند لازم است.




نحوه طویل کردن ستون‌ها

ابتدا سطح تماس دو ستون را به خوبی گونیا می‌کنند و با سنگ زدن صاف می‌نمایند تا کاملا در تماس با یکدیگر یا صفحه وصله قرار گیرد. در صورتی که پروفیل دو ستون یکسان نباسد، باید اختلاف دو نمره ستون را با گذاردن صفحات لقمه (همسو کننده) بر ستون فوقانی را پر نمود؛ سپس صفحه وصله را نصب کرد و جوش لازم لازم را انجام داد. اگر ابعاد مقطع دو نیمرخ که به یکدیگر متصل می‌شوند، تفاوت زیاد داشته باشند، به طوری که قسمت بزرگی از سطح آن دو در تماس با یکدیگر قرار نگیرد، در این صورت باید یک صفحه تقسیم فشار افقی بین دو نیمرخ به کار برد. این صفحه معمولا باید ضخیم انتخاب شود تا بتواند بدون تغییر شکل زیاد، عمل تقسیم فشار را انجام دهد. کلیه ابعاد و ضخامت صفحه و مقدار جوش لازم را باید طبق محاسبه و بر اساس نقشه‌های اجرایی انجام داد.





ستون‌ها با مقاطع دایره‌ای

معمولا مقاطع لوله‌ای (دایره‌ای) از قطر ۲ تا ۱۲ اینچ برای ستون‌ها بیشتر مورد استفاده قرار می‌گیرند. مقطع لوله در مواقعی که بوسیله اتصال جوش باشد، آسانتر به کار می‌رود. کاربرد لوله بیشتر در پایه‌های بعضی منابع هوایی، دکل‌های مختلف و خرپاهای سبک است. این مقطع‌ها به طور کلی مقاومترند برای اینکه ممان انرسی انها در تمام جهات یکسان است. با تغییر ضخامت مقاطع لوله‌ای می‌توان اینرسی‌های مختلف را به دست‌آورد.




طراحی اعضای خمشی

تنش مجاز برای اعضای خمشی بدون نیروی فشاری مطابق زیر است

الف) برای بال‌ها.

ب) برای اعضای جان ساخته شده از میلگرد و یا مقاطع غیر میلگرد.

د) برای ورق‌های نشیمن.

طراحی اعضای فشاری – خمشی

در صورتیکه فاصله بین گره‌ها مساوی ویا بیشتر از ۶۰ سانتی‌متر باشد، اعضای فوقانی تیرچه‌ها باید به نحوی طراحی شوند که رابطه زیر در گره‌ها برقرار شود و همچنین باید رابطه زیر دربین دو گره برقرارگردد:

برای اعضای میانی تیرچه‌ها

برای اعضای کناری تیرچه‌ها

Fe تنش مجاز اولر و L فاصله بین گره‌ها می‌باشد.




محدودیت‌های لاغری اعضا

ضریب لاغری(L/r) در اعضای میانی وکناری بال‌ها، همچنین در اعضا ی فشاری وکششی جان تیرچه نباید از مقادیر زیر تجاوز نماید:

در اعضای میانی بال فوقانی ۹۰

در اعضای کناری بال فوقانی ۱۲۰

در اعضای فشاری جان ۲۰۰

دراعضای کششی ۲۴۰




ضوابط ویژه اعضای جان تیرچه‌ها (کنترل برش)

حداقل نیروی برشی قائم که برای اعضاء باید در نظر گرفته شود. نباید از ۲۵ درصد عکس العمل تکیه گاهی کمتر باشد.

در مواردیکه اعضای جان تیرچه‌ها تحت اثر ترکیب تنش‌های فشاری وخمشی قرار گیرند. باید بر اساس ضوابط اعضای فشاری – خمشی طراحی گردند. در حالتی که خمش در این اعضا، موجب انحنای دو طرفه آنها گردد، ضریب Cm معادل ۰٫۴ در نظر گرفته می‌شود.




مقاومت جوش

اتصالات جوش اعضا باید بتواند حداقل دوبرابر بار طراحی تیرچه‌ها را تحمل نماید.




وصله

اتصال دوپروفیل بصورت وصله درهر نقطه ازبال مجاز است. وصله بصورت جوش سربه سر در اعضای کششی باید بتواند حداقل مقاومتی معادل 1.14Fy.A را از خود نشان دهد که درآن A کل سطح مقطع عضو وصله شده می‌باشد.

۲-طراحی مرحله دوم بعد از گرفتن بتن:

در این مرحله مقطع مرکب شامل تیرچه فولادی وبتن باید تلاشهای ناشی ازتمام بارهای وارده به سقف (قبل و بعد از گرفتن بتن) راتحمل کند .






اسکلت فولادی
اسکلت فولادی یا قاب فولادی اصطلاحی است که در ساختمان‌سازی به کار می‌رود. ساختمان‌هایی با اسکلت فولادی، از ستون‌های عمودی و تیرهای I-شکل افقی که به شکل شبکه‌های مستطیلی به هم وصل شده‌اند، تشکیل گردیده‌اند. این شبکهٔ مستطیل-شکل، وظیفهٔ نگه‌داری طبقات، سقف‌ها و دیوارهایی را که به اسکلت ساختمان وصل شده‌اند، برعهده دارد. توسعهٔ این فناوری، امکان ساخت آسمان‌خراش‌ها را فراهم کرده‌است.




مفهوم کلی

پروفیل یا نیمرخ یا سطح مقطع یک ستون فولادی نورد شده، مانند حرف H در زبان انگلیسی است. جهت فراهم کردن مقاومت مناسب در برابر تنش‌های فشاری، فلنج‌های ستون‌ها دارای ضخامت و گستردگی بیشتری نسبت به فلنج‌های تیرها است. فولادهایی با مقاطع مربعی و دایره‌ای توخالی نیز به طور معمول جهت پر شدن توسط خمیر بتن استفاده می شوند. تیرهای فولادی توسط پیچ و مهره و سایر اتصالات به ستون‌ها وصل می شوند. در گذشته نیز از پرچ برای اتصال استفاده می شد. به دلیل بیشتر بودن لنگر خمشی در تیرها، معمولا جان مقطع فولادی تیرهای I-شکل دارای عرض بیشتری نسبت به جان ستون‌ها است.

از عرشه‌های فولادی، می توان به عنوان قالب‌های راه‌راه در زیر لایهٔ ضخیمی از بتن مسلح، برای پوشش قسمت بالایی قاب فولادی استفاده کرد. استفاده از قطعات بتنی پیش‌ساخته نیز روش متداول دیگری است. معمولا در آخرین طبقهٔ ساختمان‌های تجاری، از فضای خالی بین سطح بیرونی و قطعات سازه‌ای کف طبقه به عنوان محلی برای کابل‌ها و یا کانال‌های هوا استفاده می شود.

اسکلت ساختمان باید از نفوذ حرارت بالا محافظت شود. زیرا نرم شدن فولاد در دمای زیاد، می تواند موجب فروپاشیدن ساختمان گردد. در ستون‌ها می توان با پوشانده شدن توسط مواد مقاومی در برابر آتش همچون مصالح بنایی، بتن و یا لایهٔ گچی این مشکل را برطرف کرد. تیرها را نیز می توان با بتن، لایهٔ گچی و یا اسپری‌های مخصوص عایق‌کاری در برابر حرارت، پوشش داد. همچنین از پوشش‌های سقفی مقاوم در برابر آتش نیز می توان بهره برد.

لایه‌ٔ بیرونی ساختمان با استفاده از تکنیک‌های ساخت‌وساز و یا سبک‌های معماری مختلف به اسکلت ساختمان متصل می شود. از آجر‌ها، سنگ‌ها، قطعات بتنی، شیشه، صفحات فلزی و رنگ، برای محافظت از فولاد در برابر تغییرات آب‌و‌هوایی استفاده می شوند.





در ایران

سازه فلزی با دیوار برشی فولادی: که وزن آهن آلات مصرفی در آن ۴۵تا۵۵ کیلوگرم برای هر مترمربع است که نسبت به سازه‌های متداول ۴۰ درصد کمتر است.

در این نوع ساختمان برای ساختن ستونها و تیر از پروفیل فولادی استفاده می‌شود. همچنین از نبشی تسمه و برای زیر ستون از ورقه فولادی استفاده می‌نمایند و معمولاً دو قطعه را به وسیله جوش به هم دیگر متصل می‌نمایند. سقف این نوع ساختمانها ممکن است تیرآهن و طاق ضربی باشد و یا از انواع سقف‌های دیگر از قبیل تیرچه بلوک غیره استفاده می‌گردد.

برای پارتیشنها می‌توان مانند ساختمان‌های بتونی از انواع آجر و یا قطعات گچی و یا چوبی و سفالهایی تیغه‌ای استفاده نمود. در هر حال جدا کننده‌ها می‌باید از مصالح سبک انتخاب شود. در بعضی کشورها بر خلاف کشور ما برای اتصال قطعات از جوش استفاده نکرده بلکه بیشتر از پرچ و یا پیچ و مهره استفاده می‌نمایند. البته برای ستونها نیز می‌توان به جای تیرآهن از نبشی و یا ناودانی استفاده نمود.

بطور کلی منظور از ساختمان فلزی ساختمانی است که ستونها و تیرهای اصلی آن از پروفیل‌های مختلف فلزی بوده و بار سقفها و دیوارها و جدا کننده‌ها (پارتیشن‌ها) بوسیله تیرهای اصلی به ستون منتقل شده و وسیله ستونها به زمین منتقل گردد.




روشهای طراحی سازه های فولادی ساختمانی

ابعاد پروفیل های مورد استفاده در سازه های فلزی را می توان با یکی از روشهای زیر محاسبه کرد. از روشهای زیر دو روش تنش مجاز و روش حدی در مقررات ملی ساختمان مبحث ۱۰ ایران آورده شده است.

روش تنش مجاز

روش طرح پلاستیک

روش حالت حدی






تکیه‌گاه (سازه)

برای این که یک سازه، تحت تأثیر نیروهای خارجی حرکت نکند، باید توسط قیدهایی به محیط (زمین یا هر جسم دیگر) متصل گردد. به این قیدها، تکیه‌گاه (به انگلیسی: Support) می‌گویند.

تکیه‌گاه‌ها بر حسب قیدی که در مقابل حرکت به وجود می‌آورند، به انواع زیر دسته‌بندی می‌شوند:




تکیه‌گاه مفصلی ثابت (لولایی)

تکیه‌گاه مفصلی ثابت یا تکیه‌گاه لولایی (به انگلیسی: Hinged Support) نوعی از تکیه‌گاه‌است که از تغییر مکان نقطهٔ تکیه‌گاهی (در فضا و یا در صفحه) جلوگیری به عمل می‌آورد، ولی هیچ گونه مقاومتی در برابر دوران سازه، حول محورهای تکیه‌گاه ندارد. بنابر این چنانچه سازه‌ای به این نوع تکیه‌گاه متکی باشد، در مقابل چرخش آن حول محورهای پایه، هیچ گونه لنگر واکنشی ایجاد نمی‌شود و به علت محدود شدن سه امتداد حرکت در فضا و دو امتداد حرکت در صفحه، درحالت کلی سه مؤلفهٔ واکنش تکیه‌گاهی در فضا و در حالت خاص دو مؤلفهٔ واکنش تکیه‌گاهی در صفحه ایجاد می‌شود.




تکیه‌گاه مفصلی متحرک (غلتکی)

تکیه‌گاه غلتکی (به انگلیسی: Roller Support) یا تکیه‌گاه مفصلی متحرک (به انگلیسی: Movable Support) کاملاً شبیه تکیه‌گاه لولایی است، با این تفاوت که نسبت به آن درجهٔ آزادی بیشتری دارد. این درجهٔ آزادی، همان حرکت پایه در امتداد حرکت غلتک‌هاست. در واقع در این نوع تکیه‌گاه‌ها تنها یک امتداد حرکت محدود می‌شود و در نتیجه واکنش تکیه‌گاهی ایجاد شده، در امتدادی است که از حرکت پایه در آن امتداد جلوگیری شده‌است. این واکنش تکیه‌گاهی، عمود بر امتداد قابل حرکت تکیه‌گاه‌است که از مرکز مفصل هم می‌گذرد.




تکیه‌گاه گیردار

در صفحه، تکیه‌گاه گیردار (به انگلیسی: Fixed Support) از حرکت نقطهٔ تکیه‌گاهی در امتداد محورهای x و y و همچنین از دوران جسم حول نقطهٔ تکیه‌گاهی جلوگیری می‌کند. بنابر این سه مؤلفهٔ واکنش تکیه‌گاهی در این نوع تکیه‌گاه ایجاد می‌شود.




تکیه‌گاه ارتجاعی (فنری)

در تکیه‌گاه ارتجاعی یا تکیه‌گاه فنری (به انگلیسی: Elastaic Support)، واکنش‌های تکیه‌گاهی مؤثر به جسم، متناسب با سختی (قابلیت تغییر مکان و دوران) محیط تکیه‌گاهی در محل اتکا هستند. به عبارت دیگر اگر به جای تکیه‌گاه ساده، فنری با ضریب سختی K قرار داده شده و در محل اتکا تغییر مکانی برابر Δ در امتداد فنر ایجاد گردد، مقدار واکنش تکیه‌گاهی از رابطهٔ R=KΔ به دست می‌آید که در آن K ضریب ثابت فنر می‌باشد. به همین نحو اگر به جای تکیه‌گاه گیردار، سیستمی از فنرها با ضریب سختی K قرار داشته و چرخش و یا دوران معادل θ در محل اتکا ایجاد گردد، مقدار کوپل مقاوم، از رابطهٔ M=Kθ به دست خواهد آمد.




تکیه‌گاه رابط (میله‌ای)

تکیه‌گاه رابط یا تکیه‌گاه میله‌ای (به انگلیسی: Link Support)، نوعی تکیه‌گاه‌است که از یک میله کوتاه که دو انتهای آن مفصل می‌باشد، تشکیل گردیده‌است. در نتیجه، واکنش تکیه‌گاه، نیرویی است که در امتداد محور میله باشد.





مهندسی سازه

مهندسی سازه (به انگلیسی: Structural engineering) بخشی از مهندسی عمران و مهندسی هوافضا است. در مهندسی عمران، مهندسی سازه در مورد ساختارهای انتقال بار از اجزاء یک ساختمان یا بنا به محل تکیه‌گاهی آن مانند پی سازه صحبت می‌کند.

اگر مهندسی سازه را متشکل از دو بخش تحلیل و طراحی بدانیم، سرسلسله‌ی روابط تحلیلی تئوری الاستیسیته و مرجع بخش طراحی استانداردها و قضاوت‌های مهندسی است. درتئوری الاستیسیته از جبر تانسورها استفاده می‌شودو با استفاده از قانون هوک، دستگاه معادلات دیفرانسیل جزئی تعادل و سازگاری تشکیل می‌شوند. مشهورترین روش حل عددی این دستگاه معادلات، روشی است به نام اجزا محدود.

مهندسی سازه گرایشی از مهندسی است که با طراحی سیستم‌های سازه‌ای به هدف باربری و مقاومت در برابر نیروهای گوناگون وارد بر سازه سروکار دارد.

مهندسی سازه عمدتاً با طراحی ساختمان‌ها و سازه‌های غیر ساختمانی سر و کار دارد و همچنین نقش ضروری در طراحی ماشین آلات در جاهایی که یکپارچگی سازه‌ای بر روی ایمنی و اطمینان پذیری ماشین تأثیر دارد بازی می‌کند. ساخته‌های دست بشر، از مبلمان تا تجهیزات پزشکی، از خودرو و ... نیاز به حضور مهندس سازه دارد.

یک مهندس سازه باید در هنگام طرح یک سازه به دو مسئله توجه کند: مسئلهٔ اول بررسی مقاومت سازه در برابر بارها ی وارد بر سازه که شامل بارهای زنده، بار باد، برف، انسان، اشیا و بار مرده و بار زمین لرزه و... است که با طراحی سیستم باربر ومحاسبه و کنترل مقاومت کافی اعضای سازه در برابر این بارها است. مسئلهٔ دوم بررسی کارایی سازه است یعنی سازه باید فاقد مواردی مانند لرزش و تغییر شکل‌های خارج از اندازهٔ مجاز آیین نامه باشد. زیرا این موارد در کاربری سازه مشکل زا هستند و باعث مشکلی مانند ترس در کاربران سازه و یا مواردی مانند ترک خوردن دیوارها و نازک کاری‌ها می‌شوند.




تاریخچه مهندسی سازه

تاریخچه مهندسی سازه با آغاز یک جا نشینی بشر آغاز شد. اولین تاریخچه مدون مهندسی سازه با ساخت اهرام پله‌ای در مصر توسط آمون هوتپ، که اولین مهندسی که با نام شناخته می‌شود باز می‌گردد. در این دوره سازه‌های عظیمی چون اهرام در مصر، زیگورات چغازنبیل و پارسه (تخت جمشید) در ایران نام برد.




سازه‌های مهندسی سازه

پل، سد، پی، سازه‌های دریایی، خطوط لوله، نیروگاه، دیوارهای حائل و سازه‌های نگهبان، راه، تونل، آبرو
مهندسی سازه در ایران

در ایران گرایش سازه به عنوان زیر مجموعهٔ مهندسی عمران -عمران شناخته می‌شود.




مهندسی عمران

داوطلبان برای ورود به دورهٔ کارشناسی ارشد مورد سنجش قرار می‌گیرند. امکان ادامهٔ تحصیل در سطح کارشناسی ارشد و دکترا برای تمام کسانی که موفق به دریافت مدرک کارشناسی ولو از هر رشته ای هستند در دانشگاه‌های سراسری و آزاد وجود دارد:قوانین آموزش عالی کشور ایران

حداقل مدت زمان لازم برای اتمام این دوره 4ترم و حداکثر مجاز برای اتمام این دوره مطابق آئین نامه دوره کارشناسی ارشد3 سال می‌باشد.

در حال حاضر در مقطع کارشناسی ارشد مهندسی سازه در دانشگاه‌های ایران دروس زیر به تایید وزارت آموزش عالی رسیده است • استاتیک و مقاومت مصالح




تحلیل سازه‌ها
طراحی سازه‌های فولادی
طراحی سازه‌های بتنی
مبانی مکانیک خاک
بارگذاری
تحلیل ماتریسی سازه‌ها
ریاضیات عالی مهندسی
دینامیک سازه‌ها
تئوری الاستیسیته و پلاستیسیته
روش اجزاء محدود
سمینار
پایان نامه تز
پایداری سازه‌ها
سازه‌های فلزی پیشرفته
سازه‌های بتن آرمه پیشرفته:




چارت دروس کارشناسی ارشد ناپیوسته- سازه



دروس جبرانی (22 واحد)

استاتیک و مقاومت مصالح
تحلیل سازه‌ها
طراحی سازه‌های فولادی
طراحی سازه‌های بتنی
مبانی مکانیک خاک
بارگذاری
تحلیل ماتریسی سازه‌ها





دروس اصلی و تخصصی الزامی (15واحد)

ریاضیات عالی مهندسی
دینامیک سازه‌ها
تئوری الاستیسیته و پلاستیسیته
روش اجزاء محدود
سمینار
پایان نامه تز




یکی از دروس زیر: (توضیح در شماره 3)

پایداری سازه‌ها
سازه‌های فلزی پیشرفته
سازه‌های بتن آرمه پیشرفته




دروس تخصصی اختیاری (9واحد)

پایداری سازه‌ها، سازه‌های فلزی پیشرفته، سازه‌های بتن آرمه پیشرفته، مهندسی زلزله، اصول طراحی سازه‌های دریایی، طراحی غیر ارتجاعی سازه‌ها، بتن پیش تنیده، اثر زلزله بر سازه‌های ویژه، طراحی ساختمانها در برابر زلزله، بهینه سازی در مهندسی عمران، تئوری صفحات و پوسته‌ها، سدهای بتنی، نگهداری و ترمیم سازه‌ها، آزمایشگاه سازه، مهندسی پل، تئوری پلاستیسیته، سازه‌های فضایی، تکنولوژی عالی بتن، ایمنی در سازه‌ها، مهندسی پی پیشرفته، طراحی هیدرولیکی سازه‌ها، اندرکنش خاک و سازه، دینامیک خاک، اندکنش سازه و آب، بهسازی سازه‌های آسیب دیده در زلزله .





مهندس سازه

مهندس سازه(به انگلیسی: Structural engineer)، وظیفه تحلیل، طراحی، برنامه‌ریزی و پژوهش دربارهٔ اجزاء و سیستم‌های سازه‌ای را برعهده دارد تا به اهدافی همچون تضمین امنیت و آسایش کاربران وساکنان دست یابد. وظایف مهندس سازه، در حوزهٔ ایمنی، فنی، اقتصادی و محیط زیست بوده و ممکن است شامل عوامل زیبایی‌شناسی و اجتماعی نیز باشد.

امور مربوط به مهندسی سازه معمولاً در حوزهٔ مهندسی عمران نیز مطرح است. هم‌اکنون در ایالات متحده، مهندسان سازه، دارای مجوز مهندسی عمران هستند، البته این شرایط، در ایالت‌های مختلف متفاوت است. در بریتانیا، بیشتر مهندسان سازه در صنعت ساختمان اکثراً عضو مؤسسهٔ مهندسان سازه هستند تا مؤسسهٔ مهندسان عمران.

معمولاً سازه‌هایی از قبیل ساختمان‌ها، برج‌ها، استادیوم‌ها و پل‌ها توسط مهندسان سازه طراحی می‌شوند. سازه‌های دیگری نیز همچون سکوهای نفتی، ماهواره‌های فضایی، هواپیماها و کشتی‌ها ممکن است توسط مهندس سازه طراحی شود. بیشتر مهندسان سازه، در زمینه‌های صنعت ساخت و ساز، مشغول هستند. اگرچه برخی از آن‌ها در صنایع هوافضا، خودروسازی و کشتی‌سازی نیز کار می‌کنند. در صنعت ساخت و ساز نیز با همکاری معماران، مهندسان عمران، مکانیک، برق، نقشه‌بردارها و مدیران ساخت و ساز کار می‌کنند.

مهندسان سازه تضمین می‌کنند که ساختمان‌ها یا پل‌ها به حدی محکم و پایدار ساخته شده‌اند که می‌توانند بارهای سازه‌ای متداول (همچون گرانش زمین، باد، برف، باران، زمین‌لرزه، فشار زمین، تغییرات دما و رفت‌وآمد و ترافیک) را تحمل کرده و جلوی مرگ و آسیب‌دیدگی را بگیرند. آن‌ها همچنین سازه‌ها را چنان طراحی می‌کنند که به حدی محکم هستند که تغییر شکل و لرزش‌های نامتداول و بیشتر از محدودیت‌ها را نداشته باشند. آسایش مردم، موضوعی است که در این محدودیت‌ها در نظر گرفته می‌شود. ماندگاری نیز بحثی است که در طراحی پل‌ها و هواپیماها و یا سازه‌های دیگری که در طول عمرشان تنش‌های زیادی به آن‌ها وارد خواهد شد، مورد بررسی قرار می‌گیرد. موضوع دیگر نیز، دوام و پایداری مصالح، در مقابل خرابی‌هایی است که می‌توانند موجب مختل شدن کارآیی‌شان در طول عمر سازه باشند.




تحصیلات

تحصیلات مهندس سازه معمولاً از طریق مقطع کارشناسی مهندسی عمران و کارشناسی ارشد مهندسی سازه به دست می‌آید. هستهٔ اصلی موضوعات مهندسی سازه عبارتند از مقاومت مصالح، مکانیک جامدات، استاتیک، دینامیک، علم مواد، محاسبات عددی و طراحی سازه‌ها. دروس عمومی این رشته نیز عبارتند از طراحی سازه‌های بتن آرمه، سازه‌های مرکب، چوبی، بنائی و فولادی که در سطوح بالاتر تحصیلات مهندسی سازه تدریس می‌شوند. درس تحلیل سازه‌ها که شامل تحلیل مکانیک سازه، دینامیک سازه و شکست سازه می‌شود برای بالا بردن مهارت‌های بنیادین طراحی سازه‌ها برای دانشجویان در نظر گرفته شده‌است. در سطوح بالاتر یا در برنامه فارغ التحصیلی، طراحی بتن پیش تنیده، طراحی قاب فضایی برای ساختمان و هواپیما، مهندسی پل، نوسازی سازه‌های شهری و هوافضا و تخصص‌های پیشرفته دیگر مهندسی سازه معمولاً تدریس می‌شوند.

اخیراً در ایالات متحده، در انجمن مهندسی سازه دربارهٔ آموخته‌های فارغ‌التحصیلان مهندسی سازه صحبت‌هایی شده‌است. بعضی از این صحبت‌ها دربارهٔ مدرک کارشناسی ارشد و به عنوان حداقل استانداردها برای صدور مجوز به عنوان مهندس عمران هستند. در دانشگاه کالیفرنیا، سن دییگو مدرک جداگانه‌ای برای دوره لیسانس مهندسی سازه ارائه می‌شود. بسیاری از دانشجویانی که به عنوان مهندس سازه فارغ‌التحصیل می‌شوند، در زمینهٔ مهندسی عمران، مکانیک و یا هوافضا نیز با تاکید بر مهندسی سازه کسب تخصص می‌کنند. برنامه‌های درسی رشتهٔ مهندسی معماری نیز بر سازه تاکید داشته و معمولاً به همراه مهندسی عمران در یک دانشکدهٔ مشترک، استقرار دارند.
9:18 pm

آزمایشگاه

آزمایشگاه مکانی است که برای انجام آزمایش علمی از جمله آزمایش هایی بر روی مواد شیمیایی ساخته می‌شود. در آزمایشگاه وسایل و مواد آزمایشگاهی ویژه‌ای قرار داده می‌شود که با آن‌ها می‌توان برخی آزمایش‌ها را انجام داد. برای مثال در آزمایشگاه برق، از تجهیزات، قطعات و ابزارهای برقی برای انجام آزمایش هایی بر روی سیستم های برقی استفاده می شود. آزمایشگاه‌ها را می‌توان در مدرسه‌ها و دانشگاه‌ها، صنایع، تأسیسات دولتی و ارتشی و حتی بر روی کشتی‌ها و هواگردها نیز یافت.





در دانشگاه‌ها زمانی که آموزش فراگیر در یک آزمایشگاه و با آموزش انجام یک فعالیت عملی باشد آن را «آموزش آزمایشگاهی» می‌نامند.
معمولا ازمایشگاه ها به دسته های زیر تقسیم می شوند: ازمایشگاه های فیزیک،ازمایشگاه شیمی،ازمایشگاه های کامپیوتر،ازمایشگاه های بهداشت،ازمایشگاه های پزشکی و تشخیص طبی



شیمی
شیمی (به انگلیسی: Chemistry) یکی از دانش‌های بنیادین است که به مطالعه و بررسی ساختار، خواص، ترکیبات، و دگرگونی ماده می‌پردازد. گسترۀ زیاد این دانش باعث شده است تا تعریف‌ یکپارچه‌ برای آن مشکل گردد.



واژه‌شناسی
برخلاف پندار عمومی، واژه شیمی برگرفته از زبان پارسی میانه یا باستان نیست. بلکه دارای ریشه‌ای هند و اروپایی است.



تاریخچه
کوشش های نخستین بشر برای فهمیدن طبیعت مواد و بیان چگونگی دگرگونی آن‌ها ناموفق بود. اندک اندک کوشش ها برای تبدیل مواد کم ارزش، به مواد ارزشمندی چون زر و سیم، منجر به پیدایی دانش کیمیا گردید. هر چند در ظاهر دانش کیمیا به خواست اصلی خود نرسید، اما دستاوردهای کیمیاگران در این راه به اندوخته گرانبهایی تبدیل شد که پایه گذار شیمی مدرن گردید.



نگاه گذرا

نظریه اتمی پایه و اساس علم شیمی است. این تئوری بیان می‌دارد که تمام مواد از واحدهای بسیار کوچکی به نام اتم تشکیل شده‌اند. یکی از اصول و قوانینی که در مطرح شدن شیمی به عنوان یک علم تأثیر به‌سزایی داشته، اصل بقای جرم است. این قانون بیان می‌کند که در طول انجام یک واکنش شیمیایی معمولی، مقدار ماده تغییر نمی‌کند. (امروزه فیزیک مدرن ثابت کرده که در واقع این انرژی است که بدون تغییر می‌ماند و همچنین انرژی و جرم با یکدیگر رابطه دارند.)

این مطلب به طور ساده به این معنی است که اگر ده‌هزار اتم داشته باشیم و مقدار زیادی واکنش شیمیایی انجام پذیرد، در پایان ما همچنان بطور دقیق ده‌هزار اتم خواهیم داشت. اگر انرژی از دست رفته یا به‌دست‌آمده را مد نظر قرار دهیم، مقدار جرم نیز تغییر نمی‌کند. شیمی کنش و واکنش میان اتم‌ها را به تنهایی یا در بیشتر موارد به‌همراه دیگر اتم‌ها و به‌صورت یون یا مولکول (ترکیب) بررسی می‌کند.

این اتم‌ها اغلب با اتم‌های دیگر واکنش‌هایی را انجام می‌دهند. (برای نمونه زمانی‌که آتش چوب را می‌سوزاند واکنشی است بین اتم‌های اکسیژن موجود در هوا و مواد آلی چوب. که نور بر روی مواد شیمیایی فیلم عکاسی ایجاد می‌کند شکل می‌گیرد.)

یکی از یافته‌های بنیادین و جالب دانش شیمی این بوده‌است که اتم‌ها روی‌هم‌رفته همیشه به نسبت برابر با یکدیگر ترکیب می‌شوند. سیلیس دارای ساختمانی است که نسبت اتم‌های سیلیسیوم به اکسیژن در آن یک به دو است. امروزه ثابت شده‌است که استثناهایی در زمینهٔ قانون نسبت‌های معین وجود دارد(مواد غیر استوکیومتری).

یکی دیگر از یافته‌های کلیدی شیمی این بود که زمانی که یک واکنش شیمیایی مشخص رخ می‌دهد، مقدار انرژی که بدست می‌آید یا از دست می‌رود همواره یکسان است. این امر ما را به مفاهیم مهمی مانند تعادل، ترمودینامیک می‌رساند.

شیمی فیزیک بر پایهٔ فیزیک پیشرفته (مدرن) بنا شده‌است. اصولاً می‌توان تمام سیستم‌های شیمیایی را با استفاده از تئوری مکانیک کوانتوم شرح داد. این تئوری از لحاظ ریاضی پیچیده بوده و عمیقاً شهودی است. به هر حال در عمل و بطور واقعی تنها بررسی سیستم‌های سادهٔ شیمیایی قابل بررسی با مفاهیم مکانیکی کوانتوم امکان‌پذیر است و در اکثر مواقع باید از تقریب استفاده کرد(مانند تئوری کاری دانسیته). بنابراین درک کامل مکانیک کوانتوم برای تمامی مباحث شیمی کاربرد ندارد؛ زیرا نتایج مهم این تئوری (بخصوص اربیتال اتمی) با استفاده از مفاهیم ساده‌تری قابل درک و به‌کارگیری هستند.

با اینکه در بسیاری موارد ممکن است مکانیک کوانتوم نادیده گرفته شود، اما از مفهوم اساسی آن، یعنی کوانتومی کردن انرژی، نمی‌توان صرف نظر کرد. شیمی‌دان‌ها برای بکارگیری کلیه روش‌های طیف نمایی به آثار و نتایج کوانتوم وابسته‌اند. علم فیزیک هم ممکن است مورد بی توجهی واقع شود، اما به هر حال برآیند نهایی آن (مانند رزونانس مغناطیسی هسته‌ای) پژوهیده و مطالعه می‌شود.

یکی دیگر از تئوری‌های اصلی فیزیک مدرن که نباید نادیده گرفته شود نظریه نسبیت است. این نظریه که از دیدگاه ریاضی پیچیده‌است، شرح کامل فیزیکی علم شیمی است. مفاهیم نسبیتی تنها در برخی از محاسبات خیلی دقیق ساختمان هسته، به‌ویژه در عناصر سنگین‌تر، کاربرد دارند و در عمل تقریباً با شیمی پیوند ندارند.



بخش‌های اصلی دانش شیمی عبارت‌اند از:

شیمی تجزیه، که به تعیین ترکیبات مواد و اجزای تشکیل دهنده آن‌ها می‌پردازد.
شیمی آلی، که به مطالعهٔ ترکیبات کربن‌دار، غیر از ترکیباتی چون دو اکسید کربن (دی اکسید کربن) می‌پردازد.
شیمی معدنی، که به اکثریت عناصری که در شیمی آلی روی آنها تاکید نشده و برخی خواص مولکولها می‌پردازد.
شیمی فیزیک، که پایه و اساس کلیهٔ شاخه‌های دیگر را تشکیل می‌دهد، و شامل ویژگی‌های فیزیکی مواد و ابزار تئوری بررسی آنهاست.

دیگر رشته‌های مطالعاتی و شاخه‌های تخصصی که با شیمی پیوند دارند عبارت‌اند از: علم مواد، مهندسی شیمی، شیمی بسپار، شیمی محیط زیست و داروسازی.



شیمی‌دان
شیمی‌دان کسی است که بر دانش شیمی اشراف دارد و یا روی آن مطالعه می‌کند.شیمی‌دان‌ها معمولا بر روی ترکیب مواد و خواص آنها کار می‌کنند.



تاریخ
نخستین فرآیند شیمیایی که بشر آن را آموخت ، سوختن است. آتش می‌توانست همه مواد را از نظر ماهیت تغییر دهد.کشف آهن و مس زندگی انسان‌ها را تغییر داد و پس از کشف طلا به عنوان یک فلز قیمتی ، بسیاری بر آن شدند تا راهی بیابند که مس را به آن تبدیل کنند.تبدیل مس به طلا را کیمیا و کسانی که بر آن اهتمام می‌ورزیدند را کیمیاگر نامیدند. بدین ترتیب کیمیاگران ، نخستین شیمی‌دان‌ها بودند.پس از لاوازیه ، دانش شیمی وارد دانشگاه‌ها شد و از آن پس به یک مطالعه تجربی دنبال می‌شد و اندازه‌گیری‌ها و ارزیابی‌های کیفی و کمی آن به ثبت رسید.



آموزش
آموزش در شیمی تقربیا در همه کشورهای دنیا در دوران مدرسه آغاز می‌شود؛ اما آموزش تخصصی آن در دانشگاه آغاز می‌شود.برای شیمی‌دان‌ها ،کاردانی ، کارشناسی ، کارشناسی ارشد ، دکتری و پسادکتری در همه جهان قابل پی‌گیری است.


جایزه‌ها
جایزه نوبل مهم‌ترین و معتبرترین جایزه در شیمی به شمار می‌رود. نشان پریسلی ، جایزه ولف ، جایزه عبدالسلام و جایزه پاولینگ از مهمترین جوایزی هستند که به شیمی‌دان‌ها اعطا می‌شود.



شیمیدانان معروف تاریخ
دمیتری مندلیف،سوانت آرنیوس ،آمادئو آووگادرو ،ویلهلم اسوالد،هرمن اشتودینگر ،هانس کریستین اورستد ،یونس یاکوب برزلیوس ،هانری بکرل،ادوارد بوخنر ،نیلز بور ،رابرت بویل ،سرگی میخائیلوویچ پروکودین گورسکی ،جوزف پریستلی ،لینوس پاولینگ ،جابر بن حیان ،جان دالتون ،پیتر دبای،هامفری دیوی ،ارنست رادرفورد ،محمد زکریای رازی ،کارل زیگلر ،گلن سیبورگ





تاریخ شیمی

تاریخ شیمی به سلسله اتفاقاتی اطلاق می‌شود که از زمان باستان تاکنون برای دانش شیمی اتفاق افتاده‌است. تا ۱۰۰۰ سال پیش از میلاد، تمدن‌های باستان از ابزارهایی استفاده می‌کردند که سرانجام اساس تنوع شاخه‌های شیمی شدند. برای نمونه استخراج فلزها از سنگ معدن، سفالگری با استفاده از لعاب،‎تخمیر آبجو و شراب، تهیهٔ رنگدانه برای لوازم آرایشی و نقاشی، استخراج مواد شیمیایی از گیاهان برای دارو و عطر، تهیهٔ پنیر، ریسندگی، دباغی کردن چرم، تهیهٔ صابون از چربی، ساخت شیشه و ساخت آلیاژهایی مانند برنج.

در گذشته تلاش برای بیان طبیعت مواد و چگونگی دگرگونی آن‌ها ناموفق بود. دانش پیشرفته‌تر کیمیاگری نیز در این مورد ناتوان بود. به هرحال دانش کیمیا به کمک انجام تحقیقات اولیه و ثبت نتیجه‌ها، پایه‌گذار شیمی مدرن بود. تغییر نگرش در شناخت مواد، زمانی شروع شد که رابرت بویل در سال ۱۶۶۱ در کتاب شیمی‌دان شکاک میان شیمی و کیمیا تفاوت قائل شد. پس از آن شیمی با تلاش‌های آنتوان لاووازیه و ارائه قانون پایستگی جرم، به یک دانش تکامل‌یافته تبدیل شد. دغدغهٔ هر دو دانش کیمیا و شیمی شناخت طبیعت مواد و چگونگی دگرگونی آن‌ها بود، اما تنها شیمی از شیوه‌های علمی قوی بهره‌مند شد. با کوشش‌های ویژهٔ جوسایا ویلارد گیبز تاریخ شیمی با ترمودینامیک رابطهٔ عمیقی پیدا کرد.

تاریخ شیمی از آغاز تاکنون با صنعت رابطه‌ای مستقیم داشته‌است. در ابتدای دوران مدرن در اروپا، شیمی از ترکیب دانسته‌های باستان با فعالیت‌های دانشمندان مسلمان در قرون وسطی توسعه یافت. سپس شیمی در کنار فیزیک توانست ماهیت درونی مواد را شرح دهد. امروزه شیمی دانشی بسیار پیچیده‌است که بخش‌های زیادی با اهداف متنوع در زمینه‌های مختلف فناوری دارد.




دوران باستان (۴۰۰۰–۳۰۰ پ. م)
مسلماً نخستین واکنش شیمیایی که بشر توانست آن را کنترل و مهار کند، سوختن و آتش بود. آتش برای مردم باستان، یک نیروی عرفانی بود که می‌توانست یک ماده را به یک مادهٔ دیگر تبدیل کند در حالی که نور و گرما نیز می‌بخشد. آتش بر بسیاری از جوامع تأثیر گذاشت. به طوری که فعالیت‌های روزمره‌ای مانند آشپزی و تهیه نور و گرما تا فناوری‌هایی مانند سفالگری، تهیهٔ آجر و ذوب فلزها همگی وابسته به آتش بودند. آتش سبب کشف شیشه و نحوهٔ پالایش فلزها شد و همین امر پایه‌گذار دانش متالوژی یا شناخت مواد شد. در اوایل نیاز زیادی به دانستن شیوه‌های پالایش فلزها بود به ویژه در مصر باستان (۲۶۰۰ پ. م) که طلا فلزی گرانبها به شمار می‌آمد. کشف آلیاژها باعث شروع عصر برنز شد. نخستین شواهدی که نشان می‌دهد انسان‌های باستان در زمینهٔ دانش متالوژی فعالیت داشتند، مربوط به هزاره‌های پنجم و ششم پیش از میلاد است. پس از آن دانش متالوژی برای یافتن چگونگی ساخت سلاح‌های جنگی برتر به کار گرفته‌شد.



مصر باستان
مصریان باستان در زمان پیش از پادشاهی قدیمی توانستند نوعی سفال براق بسازند که به سفال مصری معروف است. در آن زمان این صنعت گرانبها تلقی می‌شد چراکه این سفال‌ها از خاک رس تهیه نمی‌شدند و از سیلیس و مقادیر کمی آهک و جوش شیرین به دست می‌آمدند. مصریان باستان در زمینهٔ متالوژی نیز توانا بودند و نوشته‌هایی به خط هیروگلیف مصری مربوط به ۲۶۰۰ سال پیش از میلاد موجود است که طلا را توصیف می‌کنند. کیمیا در میان مصریان باستان نیز رواج داشت. کیمیای مصری را بیشتر از طریق نوشته‌های فیلسوفان یونانی می‌توان شناخت. دیوکلتیان، امپراطور روم هنگام حمله به مصر دستور سوزاندن اسنادی که مربوط به کیمیا باشد را داد و به همین دلیل نوشته‌های مصری کمی دربارهٔ کیمیا باقی مانده‌اند که مهم‌ترین آن‌ها پاپیروس استکهلم و پاپیروس لیدن هستند. مصریان عقیده داشتند که علم کیمیا توسط تحوت، خدای دانش و خرد پدید آمده‌است.



ایران باستان
سفالینه‌های خاکستری با لعاب سیاه در ۲۰۰۰ سال پیش از میلاد در تپه حصار و تپه سیلک به وجود آمدند. این سفال‌ها نخستین نوع سفال‌های لعاب‌داری هستند که شناخته‌شده‌اند. ایرانیان باستان برای خودآرایی از موادی مانند سرخاب، وسمه و سرمه استفاده می‌کردند که این مواد را از چربی حیوانات یا خاکستر به دست می‌آوردند و به آن‌ها رنگدانههای طبیعی می‌افزودند. در آن دوران فیروزه به خاطر رنگ زیبایش مورد توجه بود و ایران تنها کشوری بود که این سنگ گرانبها را استخراج می‌کرد.



یونان باستان
فیلسوفان تلاش می‌کردند تا بدانند چرا مواد مختلف خاصیت‌های متفاوت (رنگ، بو و غلظت) و حالت‌های متفاوت (جامد، مایع و گاز) دارند و با شیوه‌های متفاوت با یکدیگر واکنش می‌دهند. در این زمان فیلسوفان یونانی نخستین نظریه‌ها را دربارهٔ شیمی و طبیعت ارائه کردند که تاحدودی این نظریه‌ها متأثر از فرهنگ و تمدن‌های زمان خود بود. برای مثال، تالس تصور می‌کرد آب عنصر اصلی سازندهٔ جهان است. دویست سال پس از او ارسطو از «عناصر چهارگانه» سخن گفت و اعتقاد داشت که جهان از چهار عنصر آب، هوا، خاک و آتش ساخته‌شده‌است.

ارائهٔ نظریهٔ اتمی به دوران یونان باستان بازمی‌گردد. نظریهٔ اتمی مربوط به ۴۴۰ سال پیش از میلاد است. لوکرتیوس (۵۰ پ. م) در کتابی به نام «طبیعت چیزها» (به یونانی: De Rerum Natura) به اندیشه‌های دموکریت و لئوکیپوس اشاره می‌کند. دموکریت ادعا می‌کرد که همهٔ مواد از ذره‌های تجزیه‌ناپذیری به نام اتم تشکیل شده‌اند.

ساعت : 9:18 pm | نویسنده : admin | مطلب بعدی
آزمایشگاه شیمی | next page | next page